
CO450 Combinatorial Optimization

Riley Jackson

September 28, 2020

Contents

1 Spanning Trees 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Minimum Spanning Tree Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Integer Programming Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Greedy Algorithms and Matroids 4
2.1 Maximum Weight Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Spanning Trees

1.1 Overview

• Characterize spanning trees.

• Characterize minimum spanning trees (MSTs)

• Use characterizations to derive algorithms (and prove correctness)

• Prove correctness using linear programming

1.2 Basics

What is a spanning tree?

Definition Given a graph G = (V,E), a subgraph T of G is a spanning tree of G if:

• V (T ) = V (G)

• T is connected

• T is acyclic

Note Unless otherwise mentioned, all graphs are assumed to be simple (no self-loops, not multi-edges)
and undirected.

We have from MATH 249 the following characterization of spanning tree:

Theorem Let G = (V,E) be a graph and let T be a subgraph of G with V (T ) = V (G). The following
are equivalent:

• T is a spanning tree of G

• T is minimally connected (ie: removing any edge creates 2 connected components)

• T is maximally acyclic (ie: adding any edge creates a cycle)

• T is connected and has |V | − 1 edges

• T is acyclic and has |V | − 1 edges

1



• ∀u,v∈V there exists a unique (u, v) path in T (called Tuv)

Notation Given a graph G = (V,E) and some A ⊆ V , we denote the cut of A by δ (A). That is,

δ (A) = {e ∈ E : |e ∩A| = 1}

Another useful theorem is the following

Theorem A graph G = (V,E) is connected if and only if for all ∅ ( A ( V we have δ (A) 6= ∅.

1.3 Minimum Spanning Tree Problem

Given these (rather brief) pre-requisites, we are now ready to define the minimum spanning tree problem.
As input we take a connected graph G = (V,E) as well as costs ce for each edge e ∈ E. As output we
produce a minimum spanning tree T of G.

Of course, we haven’t actually defined a minimum spanning tree yet, but the definition is the obvious
one:

Definition Let G = (V,E) be a graph with edge weights (ce)e∈E . We define the cost of a subgraph H
of G to be c (H) :=

∑
e∈E(H) ce. Given a spanning tree T of G, we say that T is a minimum spanning

tree if c (T ) is minimized amongst all spanning trees of G.

Theorem Given a graph G = (V,E) with edge weights (ce)e∈E and a spanning tree T of G, the following
are equivalent:

• T is a minimum spanning tree

• ∀uv∈E\E(T )∀e∈E(Tuv) we have ce ≤ cuv

• ∀e∈E(T ) if we let T1, T2 be the two connected components of T upon removing e then e is a minimum
cost edge in δ (T1)

Proof. We sketch a proof:

• Suppose T is a minimum spanning tree and there is some uv ∈ E and some e ∈ E (Tuv) such that
ce > cuv. Notice that adding the uv edge introduces a cycle containing e so the graph T ′ obtained
by adding uv and removing e is still a tree (connected and |V | − 1 edges) yet it has strictly lower
cost, a contradiction.

• Suppose the second property holds and let e ∈ E (T ) be such that there is some f ∈ δ (T1) with
cf < ce (where T1, T2 are as defined above). Let u, v be the endpoints of f and notice that Tuv
must contain e (for otherwise there is another (u, v) path), but this is a contradiction since cf < ce.

• Finally, suppose the third property holds for a spanning tree T and let T ′ be a minimum spanning
tree such that k := E (T ) ∩ E (T ′) is maximized. If k = |V | − 1, then T = T ′ and we’re done,
otherwise there is some e ∈ E (T ) \ E (T ′). Let T1, T2 be the connected components of T after
removing e, then there is some e′ ∈ δ (T1) ∩ E (T ′). By assumption, ce ≤ ce′ , but then the tree T
with e′ substituted for e has k + 1 edges in common and is minimum, contradicting the choice of
T ′.

With the above characterizations in hand, we are ready to describe Kruskal’s algorithm for finding
minimum spanning trees:

Algorithm 1 Kruskal’s algorithm for finding minimum spanning trees

1: Initiation: H = (V,∅)
2: while H is not a spanning tree do
3: e = cheapest edge who’s endpoints aren’t in the same connected component of H
4: add e to H
5: return H

We claim this algorithm is efficient in the computational complexity sense. To see this, notice that we
can implement it by first sort the edges by weight (O (|E| log|E|)) then add those edges with endpoints

2



in different components to H. Checking and updating connected component membership can be done
in O (|V |) time by mapping each vertex to a representative of its component. Since we do this for every
edge, we conclude that Kruskals algorithm runs in O (|V ||E|) +O (|E| log|E|) = O (|V ||E|) time1.

To see that this algorithm is correct we will first show that it returns a spanning tree, then we will
show that spanning tree is minimal. Indeed, since G is connected, the minimal edge on line 3 always
exists and inner loop is well defined. Since each iteration reduces the number of connected components
by one, it follows that the loop terminates in O (|V |) iterations. Suppose for contradiction that the H
returned is not minimal, then there will be some uv ∈ E \ E (H) and some e ∈ Huv such that cuv < ce.
However, since our implementation iterates through edges in order, it follows that Huv would not exist
when uv is being tested, hence uv would have been added to H. Since it wasn’t, this is a contradiction
and H is minimal.

1.4 Integer Programming Formulation

Let G = (V,E) be a graph and let n = |V |,m = |E|. Let xe ∈ {0, 1} be a variable that indicates if edge
e is in the MST. Recall that spanning tree are acyclic and have n− 1 edges and consider the following
formulation:

min
∑
e∈E

cexe

s.t. x (E) = n− 1

∗
x ∈ {0, 1}m

where we define x (F ) =
∑

e∈F xe for F ⊆ E. This formulation finds the minimum weight subgraph with
n− 1 vertices, so we need to choose the ∗ constraint to ensure that the subset of chosen edges forms an
acyclic subgraph, hence a spanning tree.

So suppose that F ⊆ E. How many edges of F can a spanning tree have? Let K (F ) be the number
of connected components of (V, F ), we must have atmost n −K (F ) edges. It is clear that if we have
x (F ) ≤ n−K (F ) for all F ⊆ E then x represents an acyclic graph.

Hence we can fill in the ∗ constraint to get:

min
∑
e∈E

cexe

s.t. x (E) = n− 1

x (F ) ≤ n−K (F ) ∀F ⊆ E
x ∈ {0, 1}m

and the above is an integer programming formulation of the minimum spanning tree problem.
Notice that when F = {e} we have that K (F ) = n − 1, thus the constraint for F states that

x (F ) = xe ≤ n − K (F ) = n − (n− 1) = 1 =⇒ xe ≤ 1. It follows that the integer program can be
rewritten as

min
∑
e∈E

cexe

s.t. x (E) = n− 1

x (F ) ≤ n−K (F ) ∀F ⊆ E
x ≥ 0

x ∈ Zm

and the linear program relaxation is clearly seen to be

min
∑
e∈E

cexe

s.t. x (E) = n− 1 (PST)

x (F ) ≤ n−K (F ) ∀F ⊆ E
x ≥ 0

1This bound is not tight, Kruskal’s can be implemented in O (|E| log|V |) time if we are more careful during the inner
loop.

3



Thus, as an alternative proof of correctness of Kruskals we can show that the MST given is optimal in the
LP (using complementary slackness). Let z∗ be the optimal value of the LP above, notice that z∗ exists
because PST is feasible (since G is connected by assumption) and since PST is bounded (all variables
are between 0 and 1).

Notice that any spanning tree T corresponds to a feasible solution to PST, hence c (T ) ≥ z∗, thus the
spanning tree T ′ returned by Kruskals has c (T ′) ≥ z∗.

Notice also that the constraint for F = E is contained in the constraint x (E) = n− 1, so it follows
that the following LP is equivalent to PST

min
∑
e∈E

cexe

s.t. x (E) = n− 1 (PST)

x (F ) ≤ n−K (F ) ∀F ( E

x ≥ 0

and taking the dual we get the dual problem is

max
∑
F⊆E

(n−K (F )) yF

s.t.
∑

F :e∈F
yF ≤ ce ∀e ∈ E (DST)

yF ≤ 0 ∀F ( E

Write E = {e1, . . . , em} with c (e1) ≤ · · · ≤ c (em) and let Ei = {e1, . . . , ei}. Set ȳEi
= c (ei) − c (ei+1)

for 1 ≤ i < m and set ȳE = c (em). For all other F ⊆ E, set ȳF = 0. Notice that all dual variables
are non-negative by construction since the ei’s were sorted by cost (except for maybe yE , but yE is
unconstrained). It is also clear that the sum in the constraint telescopes to leave exactly ce and is thus
met with equality for all e ∈ E.

Thus, to exhibit complementary slackness we must only show that the dual variable is zero or the
corresponding primal constraint is tight. Let x̄ be the incidence variable for T ′, the tree obtained
from Kruskal’s. Clearly the first primal constraint is met with equality (which is good because ce is
unconstrained in the dual). Let T ′i = (V,Ei ∩ E (T ′)) and notice that T ′i is a maximally acyclic subgraph
of Hi = (V,Ei) (if not we can join two connected components of T ′i with an edge ej with j ≤ i, but
this contradicts Kruskals choice of cheapest connecting edges). It follows that x̄ (Ei) = n−K (Ei) and
all primal constraints are tight. Thus we get that z∗ = cT x̄ = c (T ′) and the tree returned by Kruskals
algorithm is minimal.

Remark An astute reader may notice that any choice of weights yields an integral optimal solution by
the above proof, hence every vertex is integral and the above LP relaxation exactly solves the integer
program (this is very very rare in general).

Remark Another way to formulate the acyclic constraint is to require for all ∅ ( S ( V that x (E (S)) ≤
|S| − 1.

2 Greedy Algorithms and Matroids

Generally speaking, an algorithm is greedy if makes a sequence of locally optimal choices and obtains
a globally optimal result. Notice that not every greedy algorithm works, our goal will be to try and
characterize when they are guaranteed to succeed.

2.1 Maximum Weight Forest

Definition Given G = (V,E), a forest is an acyclic subgraph.

The maximum cost forest is then the problem of finding some forest of G of maximum cost. One
approach is to compute the MST with respect to negated weights, then simply remove all negative cost
edges (if G is not connected, add missing edges with cost −`∞ (c)− 1 where c is the cost vector). To see
this is optimal (this is very handwavy btw and is essentially the raw argument I used to convince myself),
let T be the maximum spanning tree, let T ′ be T with negative edges removed and let T ∗ be a max cost

4



forest. Let F be the set of negative edges in T . For e ∈ F , let T1, T2 be the two connected components
of T − e, then e is the maximum cost in δ (T1). In particular, every edge crossing this cut is negative
and so T ∗ doesn’t cross it. Clearly T1 and T2 are minimum spanning trees on their respective vertex sets.
By repeating this process and subdividing again, we get down to components that are connected with
positive edges and in this case T and T ∗ agree. Working back up, we see that c (T ) = c (T ∗).

Of course, we can write this idea in pseudocode and get

Algorithm 2 Modified Kruskal’s algorithm for finding maximum cost forests

1: Initiation: H = (V,∅)
2: while ∃e ∈ E : ce > 0 and the endpoints of e are in different connected components of H do
3: e = highest cost such edge
4: if ce > 0 then
5: add e to H
6: return H

2.2 Matroids

Let’s re-examine the problem of maximum weight forest, if we let F denote the current edge set and we
let I denote the set of all forests of G then we can rewrite the above pseudocode as:

Algorithm 3 Modified Kruskal’s algorithm for finding maximum cost forests (rewrite)

1: Initiation: F = ∅
2: while ∃e ∈ E : F ∪ {e} ∈ I and ce > 0 do
3: e = highest cost such edge
4: F = F ∪ {e}
5: return H

We can notice and abstract away several key properties of I, the “universe” we are optimizing over.
In particular we have I ⊆ 2E and

• ∅ ∈ I

• F ′ ⊆ F ∈ I =⇒ F ′ ∈ I

• ∀A ⊆ E, every inclusion-wise maximal element of I contained in A has the same cardinality.

Definition Let S be a finite set, called a ground set, and let I ⊆ 2S . The set M = (S, I) is called a
matroid if

(M1) ∅ ∈ I

(M2) F ′ ⊆ F ∈ I =⇒ F ′ ∈ I

(M3) ∀A ⊆ S, every basis of A has the same cardinality

where a basis of A ⊆ S is an inclusion wise maximal element of I contained in A

Example

• Let G = (V,E), let S = E, and let I be the set of all forests of G, this is called the Graphi-
cal/Forest Matroid.

• Let S = {1, 2, . . . , n}, let r ∈ {0, 1, . . . , n}, and let I be the subsets of S with atmost r elements.
Ur
n = (S, I) is called the Uniform Matroid of Rank r.

• Let N be an m× n matrix of real numbers, let S = {1, 2, . . . , n}, and let I be the set of all A ⊆ S
such that the columns indexed by A are linearly independent. This is called the Linear Matroid
(notice in this case that a basis of A in the matroid sense corresponds to a basis of the span of the
columns indexed by A in the linear algebra sense).

5



Elements of I are called independent sets. Similarly, subsets of S that are no in I are called
dependent sets. Minimal dependent sets are called circuits2. If M = (S, I) satisfies (M1) and
(M2) then is is called an independence system3. Given an independence system A, we say that
r (A) := max {|B| : B ⊆ A,B ∈ I} is the rank of A. We say that r (S) is the rank of M , ie: the rank
of the matroid or independence system. Finally, we define ρ (A) := min {|B| : B is a basis of A}. Clearly
we have that M is a matroid if and only if ρ (A) = r (A) for all A ⊆ S.

Given the above, we can present an algorithm4 for optimization over an arbitrary independence system
M = (S, I), ie: we find A ∈ I maximizing c (A) =

∑
e∈A ce

Algorithm 4 Generic Greedy Algorithm

1: Initiation: F = ∅
2: while ∃e ∈ E : F ∪ {e} ∈ I and ce > 0 do
3: e = highest cost such edge
4: F = F ∪ {e}
5: return H

Theorem (Rado ’57, Edmonds ’71) Let M be a matroid and c ∈ RS
+, then a greedy algorithm finds the

maximum weight independent set.

Proof. This will follow from a later result.

Theorem (Rado, Edmonds) Let M = (S, I) be an independence system, then greedy finds an optimal
independent set for all c ∈ RS

+ if and only if M is a matroid.

Proof. The reverse implication follows from the theorem above. Suppose that M is not a matroid, then
there is some A ⊆ S and some bases A1, A2 of A such that |A1| < |A2|. Define c by

ce =


1 e ∈ A1
|A1|
|A2| + ε e ∈ A2 \A1

0 else

for sufficiently small ε. Greedy will find some independent set with cost c (A1) = |A1| but the optimal
solution has cost atleast

c (A2) = |A1 ∩A2|+ |A2 \A1| ·
(
|A1|
|A2|

+ ε

)
= |A1 ∩A2|+ |A1| − |A2 ∩A1| ·

|A1|
|A2|

+ ε (|A2 \A1|) > |A1|

So clearly to guarantee optimality in all cases, the independence system over which we are optimizing
must actually be a matroid. What if it’s not, how bad can we do?

Theorem (Jenkyns ’76) Let (S, I) be an independence system, let gS,I be the total weight of the inde-
pendent set found by the greedy algorithm, and let OPTS,I be the optimal solution weight. Then

gS,I ≥ qS,I ·OPTS,I

where

qS,I := min
A⊆S

r(A)6=0

ρ (A)

r (A)

The quantity qS,I is called the rank quotient.

2Circuits in graphical matroids are cycles.
3This is quite common, for example: stable sets
4This is exactly the re-written algorithm for max cost forest.

6



Proof. Let S = {e1, . . . , en} where c1 ≥ · · · ≥ cn and let Sj = {e1, . . . , ej}. Let G ∈ I be a solution
obtained by the greedy algorithm and let σ ∈ I be an optimal solution. Define Gj := Sj ∩ G and
σj := Sj ∩ σ. Then we have (defining cej+1

= 0) that

c (G) =
∑
j∈G

cj =

n∑
j=1

cej (|Gj | − |Gj−1|) =

n∑
j=1

|Gj |
(
cej − cej+1

)
Since greedy computes a maximal independent set, it follows that Gj is a basis of Sj and therefore
|Gj | ≥ ρ(Sj thus we get (defining δj = cej − cej+1) that

c (G) ≥
n∑

j=1

|Gj |δj ≥
n∑

j=1

ρ (Sj) δj ≥
n∑

j=1

qS,Ir (Sj) δj ≥
n∑

j=1

qS,I |σj |δj = c (σ)

Notice that if M is a matroid in the above theorem then qS,I = 1 and it follows that the greedy
solution is optimal, proving the omitted direction in the result of Rado and Edmonds.

How fast are greedy algorithms? Assuming we define the size of the input5 to be the size of S (ie: we
implicitely define I) the runtime is polynomial if and only if we can check F ∪ {e} ∈ I in polynomial
time.

Now that we understand matroids, we realize that checking if an independence system is a matroid
usually comes down to verify (M3), which can sometimes be quite tough. We will now work towards
several alternative characterizations of matroids that may be easier to verify in some settings.

Theorem Let M = (S, I) be an independence system, (M3) holds if and only if for all X,Y ∈ I with
|X| > |Y | there exists some x ∈ X \ Y such that Y ∪ {x} ∈ I.

Proof. The reverse direction is clear for if two bases have different sizes we could simply grow one. To
see the forwards direction suppose (M3) holds and let A = X ∪ Y , then clearly Y is not a basis of A
(since |Y | < |X|). Thus there is some x ∈ (X ∪ Y ) \ Y = X \ Y such that Y ∪ {x} ∈ I.

Example As an example of how the above characterization can be useful, let G = (V,E) be a graph
and W ⊆ V a stable set. Let kv ∈ Z+ for all v ∈W , let S = E and let

I = {F ⊆ E : |δ (v) ∩W | ≤ kv forall v ∈W}

Clearly (S, I) is an independence system. To see that it is a matroid, let X,Y ⊆ E with |X| > |Y | and
let Wy = {v ∈W : |δ (v) ∩ Y | = kv}. Notice that

2|X| =
∑

v∈Wy

|X ∩ δ (v)|+
∑

v∈W\Wy

|δ (v) ∩X|+
∑
v/∈W

|X ∩ δ (v)|

and

2|Y | =
∑

v∈Wy

|Y ∩ δ (v)|+
∑

v∈W\Wy

|δ (v) ∩ Y |+
∑
v/∈W

|Y ∩ δ (v)|

Since the first term in 2|Y | is
∑

v∈Wy
kv, it follows that atleast one of the second and third terms of

2|X| is greater then the corresponding term in 2|Y |. That is, we can find some x ∈ X \ Y such that
Y ∪ {x} ∈ I and it follows that (S, I) is a matroid.

Notice that, if we don’t necessarily know I but we know all the circuits of I, it is possible to tell
whether some set is an independent set (just verify it contains no circuits). A natural question to then
ask is, when is C ⊆ 2S the set of circuits of some matroid M = (S, I)?

Lemma Let M = (S, I) be a matroid, then for all A ∈ I and forall e ∈ S, the set A ∪ {e} contains at
most one circuit.

5If the size of the input is the size of (S, I) then clearly every greedy algorithm is polynomial time and the question is
not interesting.

7



Proof. Let A be the smallest set such that A ∈ I and there is some e such that A ∪ {e} has two distinct
circuits. Clearly in this case we have A ∪ {e} = C1 ∪ C2. Since neither C1 ⊆ C2 or C2 ⊆ C1 we can
pick e1 ∈ C1 \ C2 and e2 ∈ C2 \ C1. Consider A′ = (C1 ∪ C2) \ {e1, e2}. If A′ has a circuit C then we
must have C 6= C1, C2. It is also obvious that (A \ {e1}) ∪ {e} contains both C2 and C, hence A is not
minimal and the result follows.

Theorem Let C ⊆ 2S, then C is the set of circuits of some matroid if and only if

(Ci) ∅ /∈ C

(Cii) If C1, C2 ∈ C and C1 ⊆ C2 then C1 = C2

(Ciii) If C1, C2 ∈ C and C1 6= C2 and e ∈ C1 ∩ C2 then there is some C ∈ C with C ⊆ (C1 ∪ C2) \ {e}.

Proof.

(i) Suppose first that C is the set of circuits of a matroid. Clearly (C1) and (C2) hold, so suppose
that (C3) is violated. Then there are circuits distinct C1, C2 and some edge e ∈ S such that
(C1 ∪ C2) \ {e} ∈ I. This contradicts the prior lemma though, because adding e introduces two
circuits.

(ii) Suppose now that (C1), (C2), and (C3) hold. Define I = {A ⊆ S :6 ∃C∈C : C ⊆ A} and let M =
(S, I). Clearly (M1) and (M2) are satisfied. Suppose that (M3) is false, then there are bases A1, A2

of A ⊆ S with |A1| < |A2|. Pick A1, A2 such that |A1 ∩A2| is maximized and let e ∈ A1 \A2. Then
A2 ∪ {e} contains a unique circuit C. Choose f ∈ C \ A1, then A3 := (A2 ∪ {e}) \ {f} ∈ I. But
this is a contradiction since |A3 ∩A1| > |A2 ∩A1|.

Alternatively, we can instead specify a matroid by its bases. If we know the set B of bases then we
have that A ∈ I ⇐⇒ A ⊆ B for some B ∈ B. This begs the similar question, when is B ⊆ 2S the set of
bases of some matroid.

Theorem Let B ⊆ 2S, then B is the set of bases of some matroid (S, I) if and only if

(i) B 6= ∅

(ii) For any B1, B2 ∈ B and x ∈ B1 \B2 there is some y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} ∈ B.

Theorem Let B ⊆ 2S, then B is the set of bases of some matroid (S, I) if and only if

(i) B 6= ∅

(ii) For any B1, B2 ∈ B and y ∈ B2 \B1 there is some x ∈ B1 \B2 such that (B1 \ {x}) ∪ {y} ∈ B.

Notice that these are indeed different since in the first we choose an element to remove first and in
the second we choose an element to add first.

8


	Spanning Trees
	Overview
	Basics
	Minimum Spanning Tree Problem
	Integer Programming Formulation

	Greedy Algorithms and Matroids
	Maximum Weight Forest
	Matroids


