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Abstract

These are my personal notes for Professor Ricardo Fukasawa’s Winter 2021 offering of CO452,
Integer Programming. In this course we study properties and methods that are useful when solving
integer programs.

@IMPORTANT: These are notes for an introductory graduate level course on Integer Program-
ming and are not intended to be used as a reference on the field. I know that many of these results
can be generalized, and I am aware that my transcription may introduce some errors. Furthermore,
I skipped proofs that I found boring or non-insightful.

An integer program in the context of this course is an optimization problem of the form:

min c>x

s.t. Ax ≤ b (IP)

xj ∈ Z for j ∈ I

where c ∈ Qn, A ∈ Qm×n, b ∈ Qm,∅ ( I ⊆ [n]. We define

P = {x : Ax ≤ b}
PI = {x : Ax ≤ b and ∀j∈Ixj ∈ Z}

When I = [n] we say that IP is a pure integer program, otherwise it’s a mixed integer program.
If we have x ∈ {0, 1}n then we say IP is a binary integer program.

1 Polyhedral Theory

We begin with some basic geometric definitions:

Definition

• A halfspace is a set of the form {
x ∈ Rn : α>x ≤ β

}
for α ∈ Rn and β ∈ R.

• A hyperplane is a set of the form {
x ∈ Rn : α>x = β

}
for α ∈ Rn and β ∈ R.

• A polyhedron is a set of the form

{x ∈ Rn : Ax ≤ b}

for A ∈ Rm×n and b ∈ Rm. If A, b are rational then we say say this is a rational polyhedron.

Notice that a polyhedron is an intersection of finitely many half spaces.
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Definition Let x1, x2 ∈ Rn, then the line segment between them is denoted by[
x1, x2

]
:=
{
x ∈ Rn : x = λx1 + (1− λ)x2, λ ∈ [0, 1]

}
We now introduce (arguably) the most important type of set in optimization:

Definition A set C ⊆ Rn is said to be convex if

∀x1,x2∈C
[
x1, x2

]
⊆ C

So convex sets are those which contain all of their line segments. The following is an immediate
consequence of convexity:

Proposition Let {Cα}α∈A be a collection of convex sets, then
⋂
α∈A Cα is convex.

Unfortunately, most sets aren’t convex; this prompts the following definition:

Definition Given M ⊆ Rn, we say that the convex hull of M , denoted conv (M), to be the inclusion
wise minimum convex set containing M .

The previous proposition ensures that there is an inclusion wise minimum, and tells us that it is the
intersection of every convex set containing M .

Definition We say that x ∈ Rn is a convex combination of x1, . . . , x1 if there is some λ ∈ Rq+ such that

x =

q∑
i=1

λix
i and 1

>λ = 1

It seems that this notion is somewhat useless for Integer Programming since the feasible region will
never be convex if there are atleast 2 feasible solutions. The following is a beautiful theoretical result:

Theorem

min
{
c>x : x ∈ PI

}
=
{
c>x : x ∈ conv (PI)

}
Proof. It is clear that PI = ∅ ⇐⇒ conv (PI) = ∅, so we have WLOG that the problem is feasible. Notice
that, since PI ⊆ conv (PI), we clearly have LHS ≥ RHS. Suppose now that there is some x̄ ∈ conv (PI)
such that c>x̄ < min

{
c>x : x ∈ PI

}
. By the above, we can write x̄ =

∑q
i=1 λix

i where
{
xi
}q
i=1
⊆ PI

and λ ∈ Rq+ with 1
>λ = 1. But then we have

c>x̄ =

q∑
i=1

λic
>xi >

q∑
i=1

λic
>x̄ = c>x̄

which is a contradiction. It follows that RHS ≥ LHS and the result is proven.

Lemma C ⊆ Rn is convex if and only if all finite convex combinations of points of C are in C.

Proof. The backwards direction is obvious since a line segment is a convex combination of 2 elements. For
the forwards direction we proceed by induction on the number of elements in the convex combinations.
The base case is trivial so suppose that x̄ =

∑k
i=1 λix

i is a convex combination of k elements with k > 1,
then we have

x̄ =

k−1∑
i=1

λix
i + λkx

k = (1− λk)

k−1∑
i=1

λi
1− λk

xi + λkx
k

which is a convex combination of xk and
∑k−1
i=1 λix

i (which is in C by the induction hypothesis).

The following is a useful characterization of convex hulls:

Theorem For any M ⊆ Rn, we have that conv (M) is the set of all finite convex combinations of points
in M

Proof. Let C be the set of all finite convex combinations of points in M , then C is clearly a convex set
containing M and we get that conv (M) ⊆ C. But if x̄ ∈ C then x̄ is a convex combination of points in
M ⊆ conv (M), hence it’s in conv (M) by the previous lemma.
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Continuing with basic geometry, we have

Definition Given x1, . . . , xk ∈ Rn, we say that x̄ is a linear combination of x1, . . . , xk if there is some
λ ∈ Rk such that

x̄ =

k∑
i=1

λix
i

Definition x1, . . . , xk ∈ Rn are linearly independent if λ = 0 is the unique solution to

k∑
i=1

λix
i = 0

Definition ∅ ( L ⊆ Rn is a linear space if it’s closed under taking linear combinations.

Note Linear spaces are exactly those that can be represented in the form {x ∈ Rn : Dx = 0} for some
D ∈ Rm×n.

Definition A basis of a linear space is an inclusion wise maximal set of linearly independent vectors.

Definition The size of a basis is the dimension of the linear space, denoted dim (L).

Note It’s a basic theorem of linear algebra that the above definition makes sense. Furthermore, the
rank-nullity theorem gives that dim (L) = n− rank (D) if L = {x : Dx = 0}.

Definition Given x1, . . . , xk ∈ Rn, we say that x̄ is an affine combination of x1, . . . , xk if there is
some λ ∈ Rk such that

x̄ =

k∑
i=1

λix
i and 1

>λ = 1

Definition ∅ ⊆ A ⊆ Rn is an affine space if it’s closed under affine combinations.

We would like to generalize our notion of independence and dimension from linear spaces to affine
spaces, however blindly applying the current definitions will not match our intuition

Example Consider R2 with the standard basis {e1, e2}, clearly the line [e1, e2] is “one-dimensional”, but
it contains 2 linearly independent points. Furthermore, e1 and e2 should be “affinely dependant” since
they lie in a “one-dimensional” affine space, yet they are linearly independent.

The problem essentially boils down to the fact that affine spaces may not contain 0, and luckily all
problems go away if we first translate the affine space to contain 0. More precisely, we have:

Definition x1, . . . , xk ∈ Rn are affinely independent if λ = 0 is the only solution to

k∑
i=1

λix
i = 0 and

k∑
i=1

λi = 0

Definition An affine basis is an inclusion wise maximal set of affinely independent vectors.

Definition The dimension of an affine space is the cardinality of an affine basis.

The following proposition essentially proves that the above definition is what we want it to be.

Proposition The following are equivalent:

(i)
{
x0, . . . , xk

}
are affinely independent.

(ii)
{
x1 − x0, . . . , xk − x0

}
are linearly independent.

(iii) No point in
{
x0, . . . , xk

}
is an affine combination of the others.

Similar to linear spaces and convex spaces, we have the following descriptions of affine spaces:

Proposition The following are equivalent:
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(i) A is an affine space.

(ii) ∀x,y∈A∀λ∈Rλx+ (1− λ) y ∈ A.

(iii) A = {x ∈ Rn : Dx = d} for some D ∈ Rm×n and d ∈ Rm.

(iv) There is some linear space L such that for any x ∈ A we have A = {x}+ L.

Also, as we would expect, dim (A) = dim (L) = n− rank (D).

Also similar to convex hull and linear span, we have

Definition Given M ⊆ Rn we define the affine hull, denoted aff (M), to be the inclusion wise minimal
affine space containing M .

and we have

Proposition Let M ⊆ Rn, then we have:

(i) aff (M) is the set of all finite affine combinations of points in M .

(ii) aff (M) =
⋂

M⊆A
A affine

A.

Finally, it turns out that an ever more general definition of dimension will be useful, hence we say
(for the rest of these notes) that

Definition Let S ⊆ Rn, then the dimension of S, denoted dim (S), is the maximum number of affinely
independent points in S minus 1.

It is clear, and will be useful, that dim (S) = dim (aff (S)).
We will now develop methods that take advantage of additional structure that facilitate finding the

dimension of polyhedra. So let P = {x ∈ Rn : Ax ≤ b} and write

A =

 | a>1 |

...

| a>m |

 b =

 b1
...
bm


so we have that x ∈ P if and only a>i x ≤ bi for all 1 ≤ i ≤ m.

Definition We say that a>i x ≤ bi is an implicit equality if x ∈ P =⇒ a>i x = bi.

Example The polyhedron

P =

{
x ∈ R :

(
1
−1

)
x ≤

(
0
0

)}
has 2 inequality constraints, but clearly P = {0}, hence they are both implicit equality constraints.

Note We can find implicit equalities in poly time by solving for each 1 ≤ i ≤ m the linear program

min a>i x

s.t. Ax ≤ b

If the optimal value is bi, the i-th constraint is an implicit equality.

Let ME denote the indices of the implicit equality constraints of P and let ML = [m] \ME . Let
AE , bE , AL, bL denote the submatrices induced by rows of ME ,ML respectively, then we have

x ∈ P =⇒ AEx = bE and ∀i∈ML∃xi∈Pa
>
i x < bi

Notice that setting x̄ = 1
|ML|

∑
i∈ML xi give ALx̄ < bL (x̄ ∈ P by convexity).

Theorem Let P 6= ∅ be as above, then

(i) aff (P ) =
{
x : AEx ≤ bE

}
=
{
x ∈ Rn : AEx = bE

}
4



(ii) dim (P ) = n− rank
(
AE
)

Proof. Clearly we have P ⊆
{
x ∈ Rn : AEx = bE

}
, so since the RHS is affine we get (by taking affine

hulls)

aff (P ) ⊆
{
x ∈ Rn : AEx = bE

}
⊆
{
x ∈ Rn : AEx ≤ bE

}
Now let x̂ ∈ P \

{
x ∈ Rn : AEx ≤ bE

}
, if x̂ doesn’t exist then we have{

x ∈ Rn : AEx ≤ bE
}
⊆ P ⊆ aff (P )

Let x̄ ∈ P be such that ALx̄ < bL and consider x (ε) = x̄+ ε (x̂− x̄), clearly we can take ε small enough
so that x (ε) ∈ P , but then x̂ is an affine combination of x̄ and x (ε), hence x̂ ∈ aff (P ). It follows
immediately that

{
x ∈ Rn : AEx ≤ bE

}
⊆ aff (P ).

Example Consider the knapsack polyhedron

K = conv

({
x ∈ Rn :

n∑
i=1

aixi ≤ b

})

where 0 ≤ a1, . . . , an ≤ b.
We will show how to compute the dimension in 2 ways.

(i) First, we note that 0, e1, . . . , en ∈ K, hence we have found n + 1 affinely independent points and
the dimension is ≥ n. Since this is maximal it must be exactly equal; that is, dim (K) = n.

(ii) Second, suppose that K has an implicit equality α>x = β. Since 0 ∈ K we must have β = 0, and
since ei ∈ K we get that 0 = α>ei = αi =⇒ α = 0. That is, the only implicit equality constraints
are degenerate, hence rank

(
AE
)

= 0, and we get that dim (K) = n.

We now pivot to talking about representations of polyhedra. A tool that will be useful is the following:

Definition Given P = {(x, y) ∈ Rn × Rp : Ax+Gy ≤ b} we say the projection of P w.r.t x is

projx (P ) = {x ∈ Rn : ∃y∈RpAx+Gy ≤ b}

Projections of polyhedra can be computed using Fourier-Motzkin elimination, and the algorithm gives
the following:

(i) projx (P ) is also a polyhedron

(ii) If P is rational then so is projx (P )

(iii) If b = 0 then projx (P ) can be written as {x ∈ Rn : Dx ≤ 0}

(iv) P = ∅ ⇐⇒ projx (P ) = ∅

Definition Let x1, . . . , xk ∈ Rn, we say that x̄ is a conic combination of x1, . . . , xk if ∃λ1,...,λk≥0 such

that x̄ =
∑k
i=1 λix

i

Definition A set C ⊆ Rn is a cone if 0 ∈ C and ∀x∈C∀λ≥0λx ∈ C

Note Some authors say cone to mean convex cone, we will always specify. It’s easy to see that a cone is
convex if and only if it’s closed under conic combinations.

Definition Sets of the form C = {x ∈ Rn : Ax ≤ 0} are called polyhedral cones

Definition Given r1, . . . , rn ∈ Rk, the cone generated by r1, . . . , rk, denoted cone
(
r1, . . . , rk

)
, is

defined to be

cone
(
r1, . . . , rk

)
:=

{
x ∈ Rn : ∃µ≥0x =

k∑
i=1

µir
i

}

Note (i) We say that cone
(
r1, . . . , rk

)
is a finitely generated cone and that r1, . . . , rk are its

generators.
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(ii) If

R =

r1 · · · rk


then we say cone (R) = cone

(
r1, . . . , rk

)
(iii) We say cone (∅) = {0}

Let C be the (closed) convex cone given by C = {x ∈ Rn : 〈αj , x〉 ≤ 0 : j ∈ J}

Definition The polar cone, denoted C◦, is defined to be

C◦ := {y ∈ Rn : ∀x∈C〈x, y〉 ≤ 0}

Notice that C◦ is also a (closed) convex cone.

Proposition (C◦)
◦

= C

Proof. Let x ∈ C, then 〈x, y〉 ≤ 0 for all y ∈ C◦, so x ∈ (C◦)
◦
. Now suppose that x ∈ (C◦)

◦
, notice that

αj ∈ C◦ for all j ∈ J , hence 〈αj , x〉 ≤ 0 for all j ∈ J , so x ∈ C.

The above is an example of a tradeoff between generality and simplicity (which will not be illustrated
again), the general result is:

Theorem Let C be a cone, then (C◦)
◦

= cl (conv (C))

Note For those who have seen dual cones, we trivially have C∗ = −C◦.

Theorem Minkowski-Weyl C is a polyhedral cone if and only if it’s finitely generated.

Proof. Suppose first that C = cone
(
r1, . . . , rk

)
and define

C̄ :=

{
(x, µ) ∈ Rn × Rk : x−

k∑
i=1

µir
i = 0 and µ ≥ 0

}

Clearly C̄ is a polyedral cone and C = projx
(
C̄
)
, hence C is a polyhedral cone as well.

Suppose now that

C = {x ∈ Rn : Ax ≤ b} where A =

 | a>1 |

...

| a>k |



Claim C◦ =

C′︷ ︸︸ ︷{
y ∈ Rn : ∃µ≥0A>µ = y

}
Proof. Let y ∈ C ′, then 〈y, x〉 = y>x =

(
µ>A

)
x =

∑k
i=1 µia

>
i x ≤ 0 so y ∈ C◦. Suppose now that

y /∈ C ′, then {
µ ∈ Rn : A>µ = y and µ ≥ 0

}
= ∅

By Farkas’ lemma, it follows that there is some x ∈ Rn such that x>y > 0 and x>A> = 0. That is, there
is some x ∈ Rn such that Ax ≤ 0 and 〈x, y〉 > 0, meaning that y /∈ C◦. By double inclusion we conclude
that C◦ = C ′.

It follows immediately that C = (C◦)
◦

is finitely generated.

Note This proof can be extended to show that C is a rational polyhedral cone if and only if C can be
genreated by finitely many rational vectors.
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