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1 Introduction

Let f : Rn → R, g : Rn → Rm, h : Rn → Rp all continuous and consider the problem

inf f (x)

s.t. g (x) ≤ 0 (P)

h (x) = 0

Write S := {x ∈ Rn : g (x) ≤ 0, h (x) = 0} for the set of solutions to (P ). S is the feasible set of (P ), also
called the feasible region of (P ).

Definition x̄ ∈ Rn is a global minimizer of (P ) if x ∈ S and f (x) ≥ f (x̄) for all other x ∈ S. Often
we will simply call x̄ a minimizer of (P ).

Definition x̄ ∈ Rn is a local minimizer for (P ) if x̄ ∈ S and there is some neighborhood U of x̄ such
that f (x̄) ≤ f (x) for all x ∈ U ∩ S.

Definition x̄ ∈ Rn is a strict local minimizer of (P ) if x̄ ∈ S and there is some neighborhood U of x̄
such that f (x̄) < f (x) for all x ∈ U ∩ S \ {x̄}.

Definition x̄ ∈ Rn is an isolated minimizer of (P ) if x̄ ∈ S and there is some neighborhood U of x̄
such that x̄ is the only local minimizer of (P ) in S ∩ U .

Of course, all isolated minimizers are strict local minimizers but the converse is not true (for a
counterexample, consider the function x2 cos (1/x) + 2x2).

Definition A Continuous Optimization Problem is a problem of optimizing (minimizing or max-
imizing) a continuous function of finitely many real variables subject to finitely many equalities and
inequalities on continuous functions of said variables. In other words, a continuous optimization problem
is a problem in the form of (P )

A natural question to ask is what kinds of problems can formulated as continuous optimization
problems? Almost everything!

Example (Fermat’s Last Theorem) “There do not exist positive integers x, y, z and an integer n ≥ 3
such that xn + yn = zn.”

Consider

inf f (x) := (xx4
1 + xx4

2 − x
x4
3 )

2
+ sin (πx1)

2
+ sin (πx2)

2
+ sin (πx3)

2
+ sin (πx4)

2

s.t. g1 (x) := 1− x1 ≤ 0 (P)

g2 (x) := 1− x2 ≤ 0

g3 (x) := 1− x3 ≤ 0

g4 (x) := 3− x4 ≤ 0

The objective value is non-negative, and clearly is only zero if xx4
1 +xx4

2 = xx4
3 with x1, x2, x3, x4 integers.

The constraints give the conditions that x1, x2, x3 ≥ 1 and x4 ≥ 3, so the minimum value of this
continuous optimization problem is 0 and attained if and only if Fermat’s last theorem is false.

In fact, it is easy to find a feasible sequence
(
x(k)

)
such that f

(
x(k)

)
→ 0, hence Fermat’s last

Theorem is equivalent to determining whether the optimizer of (P ) is attained.
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From the above example we see that continuous optimization problems are notoriously hard even
when the number of variables is small. Furthermore we can formulate discrete structure such as integral
constraints in continuous optimization problems. Finally, we notice that we used highly “non-linear”
functions.

Example (Combinatorial Optimization and {0, 1} Integer Programming) Let m,n ≥ 1, A ∈ Rm×n, b ∈
Rm and c ∈ Rn be given. Consider the {0, 1} integer program

min cTx (IP)

s.t. Ax ≤ b
x ∈ {0, 1}n

Notice that we can let g (x) := Ax − b so that g (x) ≤ 0 covers the linear constraint. Furthermore, by
letting

h (x) =
(
x1 (1− x1) , . . . , xn (1− xn)

)T
we satisfy the binary constraint with h (x) = 0. Since the objective function is clearly linear and thus
continuous, this problem can be formulated as a continuous optimization problem.

From the above example, we see that combinatorial optimization problems can be posed as continuous
optimization problems with only “mildly” non-linear (quadratic) functions. Since many combinatorial
optimization problems are NP-Hard, we see that continuous optimization problems can be very hard
even with “simple” constraints.

Thus to successfully solve continuous optimization problems we must study the problem at hand and
exploit special structure and properties.

1.1 Conic Form of Continuous Optimization Problems

Definition A set K ⊆ Rn is a cone if ∀x∈K∀λ∈R+λx ∈ K.

Definition A set S ⊆ Rn is convex if ∀x,y∈S∀λ∈[0,1]λx + (1− λ) y ∈ S, ie: convex sets contain line
segments.

Definition A set K ⊆ Rn is a convex cone if it is both convex and a cone.

Let g : Rn → Rm, f : Rn → R be continuous functions and consider

inf f (x)

s.t. g (x) �K 0

where K ⊆ Rm is a convex cone and for u, v ∈ Rm, u �K v ⇐⇒ (u− v) ∈ K. This is atleast as general
as our earlier formulation as we can take K = Rm+ ⊕ {0} (the 0 on the right is the origin in Rp).

1.2 Calculus

Definition The directional derivative of f : Rn → R at x̄ ∈ Rn along the direction d is defined to be

f ′ (x̄, d) := lim
α→0

f (x̄+ αd)− f (x̄)

α
(Gatineaux (directional) derivative)

Exercise What is the directional derivative of f : Rn → R given by f (x) = ‖x‖∞ for every x̄ ∈ Rn?

Definition f : Rn → Rm is differentiable at x̄ ∈ Rn if there exists some linear A : Rn → Rm such that

lim
h→0

h∈Rn

‖f (x̄+ h)− (f (x̄) +A (h))‖
‖h‖

= 0

Such A is called the derivative of f at x̄ and is denoted by Df (x̄) or f ′ (x̄). We will also use ∇f (x̄) =
f ′ (x).
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Now suppose that f : E1 → E2, then we have

Df : E1 → L (E1,E2)

D2f : E1 → L (E1,L (E1,E2))

If f : Rn → R then Dkf (x̄)
[
h(1), . . . , h(k)

]
is the k-th directional derivative along the directions

h(1), . . . , h(k) ∈ Rn.

Theorem (Taylor’s Theorem) Let U ⊆ Rn be open and let f : U → R be a Cr function on U . Let
x, d ∈ Rn; if x, x + d ∈ U and the line segment from x to x + d lies in U then there is some z on said
line segment such that

f (x+ d) = f (x) +

r−1∑
k=1

1

k!
Dkf (x)

k times︷ ︸︸ ︷
[d, d, . . . , d] +

1

r!
Drf (z)

r times︷ ︸︸ ︷
[d, d, . . . , d]

Definition Let U ⊆ Rn be a closed set and let f : U → U , f is called a contraction mapping if
∃λ∈[0,1) such that

‖f (x)− f (y)‖ ≤ λ‖x− y‖

for all x, y ∈ U .

We now present a plethora of fixed point theorems.

Theorem (Banach Fixed Point Theorem [1922]) Let U ⊆ Rn be a closed set and let f : U → U be a
contraction mapping. Then

(i) The mapping f has a unique fixed point x̄ ∈ U .

(ii) For all x(0) ∈ U , the sequence
(
x(k)

)
generated by x(k+1) = f

(
x(k)

)
will converge to x̄ and we have

that
∥∥x(k) − x̄

∥∥ ≤ λk∥∥x(0) − x̄
∥∥.

Theorem (Brouwer’s Fixed Point Theorem [1910]) Let U ⊆ Rn be a non-empty convex compact set and
let f : U → U be a surjective continuous map. Then there is some x̄ ∈ U such that f (x̄) = x̄

Theorem (Kakutani’s Fixed Point Theorem [1941]) Let U ⊆ Rn be a non-empty compact convex set
and let f : U → P (U) be a set valued map on U . If the graph of f , {(x, v) ∈ U ⊕ U : v ∈ f (x)} is closed
and f (x) 6= ∅ and is convex for all x ∈ U then there is some x̄ ∈ U such x̄ ∈ f (x̄).

Theorem (Borsuk-Ulam Theorem [1930-1933]) Let f : Sn → Rn be a continuous map. Then there is
some x̄ ∈ Sn such that f (x̄) = f (−x̄).

1.3 Linear Algebra

We denote by Sn the set of n × n symmetric matrices, by S+ the set of n × n symmetric positive
semidefinite matrices, and by S++ the set of n× n symmetric positive definite matrices.

Theorem (Spectral Decomposition) For every A ∈ Sn there is some orthogonal Q ∈ Rn×n such that
A = QDQT where D ∈ Rn×n is diagonal.

Proof. Let D be the matrix of eigenvalues and let the columns of Q be the associated unit eigenvectors.

Definition A matrix A ∈ Sn is positive semidefinite if hTAh ≥ 0 for all h ∈ Rn.

Definition A matrix A ∈ Sn is positive definite if hTAh > 0 for all 0 6= h ∈ Rn.

Definition A matrix A is skew-symmetric if A = −AT .

Notice that if A is skew symmetric then we have

hTAh =
(
hTAh

)T
= −hTAh =⇒ hTAh = 0

and therefore A is positive semidefinite.

Theorem (Choleski Decomposition) Let A ∈ Sn, then:

(i) A is positive semidefinite iff there is some L ∈ Rn×n lower triangular such that A = LLT

(ii) A is positive definite iff there is some non-singular L ∈ Rn×n lower triangular such that A = LLT
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1.4 Miscellaneous

Note that in Taylors Theorem above, we required that all functions be real valued, and indeed there is
no natural generalization when f : Rn → Rm and m > 1, even if r = 1 (ie: we only require continuity).
There is, however, the following which is similar

Theorem Let U ⊆ R be an open set and let f : U → Rm be C1 on U . Suppose for x̄, d ∈ Rn we have
that the line segment from x̄ to x̄+ d is contained in U . Then

f (x̄+ d)− f (x̄) =

∫ 1

0

Df (x̄+ αd) d (∂α)

A consequence of this theorem is that if Df is Lipschitz continuous on U with constant L so that

‖Df (x)−Df (y)‖ ≤ L‖x− y‖

we get that

‖f (x̄+ d)− f (x̄)−Df (x̄) d‖`2 =

∥∥∥∥∫ 1

0

[Df (x̄+ αd)−Df (x̄)] d (∂α)

∥∥∥∥
`2

≤
∫ 1

0

‖Df (x̄+ αd)−Df (x̄)‖2 · ‖d‖`2 (∂α)

Lemma below and norm inequalities

≤
∫ 1

0

L‖d‖2`2α∂α

=
1

2
L‖d‖2`2

Lemma Let h :=
∫ 1

0
[Df (x̄+ αd)−Df (x̄)] d (∂α), then we have

‖h‖2 ≤
∫ 1

0

‖[Df (x̄+ αd)−Df (x̄)] d‖2 (∂x)

Proof. We have

‖h‖2`2 = hTh

= hT
∫ 1

0

[Df (x̄+ αd)−Df (x̄)] d (∂α)

=

∫ 1

0

hT [Df (x̄+ αd)−Df (x̄)] d (∂α)

≤
∫ 1

0

‖h‖`2‖[Df (x̄+ αd)−Df (x̄)] d‖`2 (∂α) Cauchy Schwarz

and the results follows by dividing by ‖h‖`2 .

Say that ‖d‖`2 < ε, then the error in the first order estimate of f (x̄+ d) is bounded above by 1
2Lε

2.

Note that we may replace f by Dfr in the above theorem (assuming f ∈ Cr+1) and apply the same
reasoning. Therefore it appears (and is the case) that this theorem is useful in the design and analysis of
algorithms for continuous optimization.

Theorem (Inverse Function Theorem) Let U ⊆ Rn be open, f : U → Rn be C1, x̄ ∈ U , and det (∇f (x)) 6=
0. Then there is some open neighborhood V of x̄ and an open neighborhood W of f (x) such that

• f (V ) = W

• f has a local C1 inverse

• f−1 : W → V

• For every y ∈W with x = f−1 (y) we have Df−1 (y) = [Df (x)]
−1

.
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Note that in the above, if f ∈ Cr then there is an f−1 ∈ Cr.

Theorem (Implicit Function Theorem) Let h : Rn → Rp, h ∈ C1 in a neighborhood of x̄ ∈ Rn where
h (x̄) = 0. Suppose that h′ (x) has full row rank (rank (h′ (x)) = p ≤ n) and define a partition [B : N ] of
the columns of h′ (x̄):

h′ (x̄) =

 | | |
h′B (x̄) | h′N (x̄)
| | |


such that h′B (x̄) ∈ Rp×p is non-singular. Partition x̄ and x with the same [B : N ]. Then there is a
neighborhood UB of x̄B and UN of x̄N and a C1 function f : UN → UB satisfying

• f (x̄N ) = x̄B

• h

((
xB
xN

))
= 0 ⇐⇒ xB = f (xN ) forall xB ∈ UB , xN ∈ UN .

Moreover, f ′ (xN ) = − [h′B (x̄)]
−1
h′N (x̄)

These are super abstract (lol), lets see an easy example.

Example Consider the very special case where A ∈ Rn×p, rank (A) = p as given in

min c>x

s.t. Ax = b

x ≥ 0

Let h (x) = Ax − b =⇒ h′ (x) = A (has full row rank) and notice that x̄B = A−1
B b − A−1

B AN x̄N so
f (xN ) = A−1

B b − A−1
B AN x̄N . Furthermore, we have that UB , UN = Rp,Rn−p respectively since these

equations are valid for the whole space (because everything is linear). We can verify the conditions on h
and on the derivative of f as well, they also work.

Lemma (Chain Rule) Let U ⊆ Rn, V ⊆ Rm be open sets and let f1 : U → Rm, f2 : V → Rp be
differentiable on U and V respectively such that f1 (U) ⊆ V . Then (f2 ◦ f1) is differentiable on U and
for all x̄ ∈ U we have

D (f2 ◦ f1) (x̄) = Df2 (f1 (x̄))Df1 (x̄)

Example (Line Search, Directional Derivatives) Suppose f : Rn → R is differentiable on Rn and we
have a point x̄ ∈ Rn and a “search direction” d ∈ Rn. We define ϕ : R→ R by ϕ (α) = f (x̄+ αd), then
ϕ′ (α) = 〈∇f (x̄+ αd) , d〉. If f ∈ C2 then ϕ′′ (α) = d>∇2f (x̄+ αd) d. Notice that if α = 0 then we have
ϕ′ (0) = 〈∇f (x̄) , d〉 and ϕ′′ (0) = d>∇2f (x̄) d.

Corollary Suppose h and x̄ are as in the implicit function theorem and assume that Z ∈ Rn×q (where
q ≤ n − p) is such that h′ (x̄)Z = 0. Then there is a neighborhood U of 0 ∈ Rq and a C1 function
t : U → Rn such that

• t (0) = 0

• t′ (0) = 0

• h (x̄+ ZdZ + t (dZ)) = 0 for all dZ ∈ U

So the function t above gives a way of moving away from x̄ (a solution of the non-linear system
h (x) = 0) in a way that keeps feasible with respect to h (x) = 0. So whats the point of the Z matrix? It
is a partial description of the null space of h′ (x̄) and it ensures “first order” feasibility is maintained.

Proof. Let h, x̄, Z be as in the assumptions. Using the partition [B : N ], define Z =

[
ZB
ZN

]
(recall that

h′ (x̄) = [h′B (x̄) | h′N (x̄)]). Let U = {dZ ∈ Rq : (x̄N + ZNdZ) ∈ UN} (here UN is the neighborhood of
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xN given in the implicit function theorem). Define t by tN (dZ) = 0 and tB (dZ) = f (x̄N + ZNdZ) −
x̄B − ZBdZ . Thus

h (x̄+ ZdZ + d (tZ)) = h

[
x̄B + ZBdZ + f (x̄N + ZNdZ)− x̄B − ZBdZ

x̄N + ZNdZ + 0

]
= h

[
fN (x̄N + ZNdZ)
x̄N + ZNdZ

]
which is zero by the implicit function theorem. Also, we clearly have t (0) = f (x̄N ) − x̄B = 0 and
t′N (0) = 0. We also have

t′B (0) = f ′ (x̄N )ZN − ZB Chain Rule

= − [h′B (x̄)]
−1
h′N (x̄)ZN − ZB Implicit Function Theorem

= [h′B (x̄)]
−1

[−h′N (x̄)ZN − h′B (x̄)ZB ]

= [h′B (x̄)]
−1 − h′ (x̄)Z

= 0

Note In LP’s, t (dZ) = 0 because the nullspace of h′ describes all possible feasible moves without needing
to add a non-linear term.

Corollary Assume h and x̄ are as described in the implicit function theorem. Let d ∈ Rn be such that
h′ (x̄) d = 0. Then there is some λ̄ > 0 and a C1 arc (directed curve) t̂ with the properties:

• t̂ (0) = x̄

• h
(
t̂ (λ)

)
= 0 for all λ ∈

[
0, λ̄
)

• f̂ ′ (0) = d

Proof. In the statement of the previous Corollary, let Z = d and using the resulting t, let t̂ (λ) =
x̄+ λd+ t (λ). The corresponding neighborhood is essentially

[
0, λ̄
)
.

The picture is roughly

t-hat-arc.png

Definition Let h : Rn → Rp with p ≤ n. We say that a point x̄ ∈ Rn is regular if rank (h′ (x̄)) = p (ie:
the Jacobian has full rank). We say that a point ȳ ∈ Rp is a regular value if ∀x ∈ h−1 (ȳ) are regular.

Note h−1 (ȳ) = ∅ implies that ȳ is a regular value.
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Here is a picture:

regularpoint.png

The set h−1 (ȳ) is thus

inverseybar.png

If h is affine, then h (x) = Ax − b for some A ∈ Rp×n, b ∈ Rp. Let ȳ ∈ Rp be given, then h−1 (ȳ) =
{x ∈ Rn : Ax = ȳ + b}.

Theorem (Sard’s Theorem, Morse-Sard Theorem) Let h : Rn → Rp where p ≤ n and h ∈ Cr with
r ≥ n− p+ 1. Then the p-dimensional Lebesque measure of {y ∈ Rp : y is not a regular value} is zero.

Note Morse [1939] proved the p = 1 case, Sard [1942] proved the generalization above. Smale [1965]
proved an infinite dimensional extension.
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2 Unconstrained Continuous Optimization

Our model is the following:

inf f (x) (P)

s.t. g (x) ≤ 0

h (x) = 0

where f : Rn → R, g : Rn → Rm, h : Rn → Rp and S = {x ∈ Rn : g (x) ≤ 0 and h (x) = 0}. For this
section, we assume that S = Rn.

Theorem (First-order necessary conditions) Let f : Rn → R be C1 and S = Rn. If x̄ ∈ Rn is a local
minimizer for (P ) then f ′ (x̄) = 0 (sometimes x̄ is called a stationary point of f).

Proof. Suppose that f ′ (x̄) 6= 0, then there is some d ∈ Rn such that 〈f ′ (x̄) , d〉 < 0 (ie: take a ∈ Sn++

and let d = −Af ′ (x̄)). Consider ϕ : R → R given by ϕ (α) = f (x̄+ αd). Then ϕ′ (0) = 〈f ′ (x̄) , d〉 < 0.
Thus for all sufficiently small, positive α we have that f (x̄+ αd) < f (x̄). Therefore x̄ is not a local
minimizer for (P ).

Optimality conditions are widely used in algorithm design. For example, many software use
∥∥∇f (x(k)

)∥∥ <
ε as a part of the stopping criteria.

Definition d ∈ Rn is a descent direction for f at x̄ ∈ Rn if 〈f ′ (x̄) , d〉 < 0. d ∈ Rn is an improving
direction for f at x̄ if f (x̄+ αd) < f (x̄) for all sufficiently small α > 0.

As we proved above, a descent direction is indeed an improving direction.

Theorem (Second-order necessary condition) Let f : Rn → R be C2 and S = Rn. If x̄ ∈ Rn is a local
minimizer of (P ) then f ′ (x̄) = 0 and ∇2f (x̄) ∈ Sn+.

Proof. The fact that the gradient vanishes is immediate from the former result. Suppose for contraction
that ∇2f (x̄) /∈ Sn+. Since f ∈ C2, the Hessian is symmetric, hence there must be some d ∈ Rn such
that d>∇2f (x̄) d < 0. Define ϕ : R → R by ϕ (α) = f (x̄+ αd). Then ϕ′ (0) = 〈∇f (x̄) , d〉 = 0 and
ϕ′′ (0) = d>∇2f (x̄) d < 0. Therefore, for all ε > 0 and sufficiently small we have f (x̄+ εd) < f (x̄)
which contradicts minimality.

Definition d ∈ Rn is called a direction of negative curvature for f at x̄ if d>∇2f (x̄) d < 0.

Theorem (Taylor’s Theorem - implicit remainder version) Let U ⊆ Rn be open, let f : U → R be Cr on
U , let x̄, d ∈ Rn, and assume that [x̄, x̄+ d] ⊆ U . Then,

f (x̄+ d) = f (x̄) +

r∑
k=1

1

k!
Dkf (x̄)

k times︷ ︸︸ ︷
[d, . . . , d] +R (x̄, d)

where R (x̄, ·) : Rn → R is such that limh→0
R(x̄,h)
‖h‖r = 0.

ie: if we are considering small values of d then the first r terms are a very good approximation.

Theorem (Second order sufficient conditions) Let f : Rn → R, f ∈ C2, S = Rn, and let x̄ ∈ Rn. If
f ′ (x̄) = 0 and ∇2f (x̄) ∈ Sn++, then x̄ is a strict local minimizer for (P ).

Proof. Let δ = min
{
d>∇2f (x̄) d : ‖d‖`2 = 1

}
, by Courant Fischer this is λmin

(
∇2f (x̄)

)
. By the previous

theorem, ∀d ∈ Rn, ‖d‖`2 = 1 and α > 0 small enough we have

f (x̄+ αd) = f (x̄) + α〈∇f (x̄) , d〉+
α2

2
d>∇2f (x̄) d+ o

(
α2
)
≥ f (x̄) +

δ

2
α2 + o

(
α2
)

Choose a neighborhood U of x̄ such that δ
2α

2 >
∣∣o (α2

)∣∣, then forall x ∈ U \{x̄} we have that f (x) > f (x̄)
and x̄ is a strict local minimizer for (P ).

How applicable is this last theorem?

Proposition Let f : Rn → R be C2 and consider f̃ (x) = f (x) + c>x where c ∈ Rn is given. Then for
almost all c ∈ Rn, f̃ ′ (x̄) = 0 =⇒ ∇2f (x̄) is non-singular.

Proof. Apply Sard’s Theorem to f (x) := f ′ (x) with r = 1 and p = n.
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