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1 Calculus in the Plane

1.1 Review

Recall that the plane is the set

R2 = {(x, y) | x, y ∈ R} (1)

which is a 2-dimensional vector space (over R) under standard component wise
operations.

Notation 1.1. For points in R we will often use x, y. For vectors in R2 we use
x = (x1, x2) and y = (y1, y2).

We equip it with the dot product (Euclidean inner product) by denoting

x · y = x1y1 + x2y2 (2)

If x ∈ R2, then |x|2 := x · x = xTx = x2
1 + x2

2 ≥ 0. The distance from 0 to
x is |x| =

√
x2

1 + x2
2.

Recall also the Cauchy-Schwarz and triangle inequalities:

|x · y| ≤ x · y (3)

||x| − |y|| ≤ |x + y| ≤ |x|+ |y| (4)

Notation 1.2. Let x ∈ R2 and r > 0, we define the open disk

D (x, r) :=
{
y ∈ R2 | |x− y| < r

}
(5)

Analagously we denote the closed disk by

D (x, r) :=
{
y ∈ R2 | |x− y| ≤ r

}
(6)

Definition 1.3. Let Ω ⊆ R2 with x ∈ Ω. We say that x is an interior point of
Ω if ∃ε > 0 such that D (x, ε) ⊆ Ω

Definition 1.4. Ω ⊆ R2 is an open set if every x ∈ Ω is an interior point of Ω.

Remark 1.5.

• ∅ is trivially open

• R2 is open

• open disks are open sets

• closed disks are not open sets

Example 1.6. Let Ω = D (x, ε) \ {x}, then Ω is open (called the punctured
disk).

Recall 1.7.

(i) If Ω1,Ω2 are open then Ω1 ∪ Ω2 is open.

(ii) If Ωi is open for all i ∈ I then
⋃
i∈I Ωi is open.
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Definition 1.8. Let E ⊆ R2, we say that E is disconnected if there exist open
sets Ω1,Ω2 ⊆ R2 such that

E ∩ Ω1, E ∩ Ω2 6= ∅ (7)

E ∩ Ω1 ∩ Ω2 = ∅ (8)

(E ∩ Ω1) ∪ (E ∩ Ω2) = E (9)

We say the E is connected if it is not disconnected.

Recall 1.9. Let F : E ⊆ R2 → R be continuous on E. If E is connected,
then F (E) = {F (x) | x ∈ E} is an interval (continuous map of connected sets
is connected).

Corollary 1.10. (IVT) Let F : E → R be continuous, let x1,x2 ∈ F (E), and
let t1 = F (x1) , t2 = F (x2). Then for all t between t1 and t2 there exists a
x ∈ E such that F (x) = t.

Definition 1.11. A domain Ω in R2 is a non-empty open connected set.

Theorem 1.12. Let Ω ⊆ R2 be open, then the following are equivalent:

• Ω is connected

• Any pair of points in Ω can be connected by a finite number of straight
line segments in Ω

Proof. Let x ∈ Ω and let

S = {y ∈ Ω | exists a piecewise linear path from x to y in Ω}

Claim. S is open

Proof. For z ∈ S we have, since z ∈ Ω and Ω is open, an ε > 0 such that
D (z, ε) ⊆ Ω and each point in D (z, ε) is reachable from z with one additional
line segment, hence D (z, ε) ⊆ S.

Claim. Ω \ S is open

Proof. Let z ∈ Ω \ S. Since z ∈ Ω and Ω is open there is an ε > 0 such that
D (z, ε) ⊆ Ω. If D (z, ε) ∩ S 6= ∅ there would be a polygonal path from x to a
point in D (z, ε) and hence to z. Hence D (z, ε) ∩ S = ∅, so D (z, ε) ⊆ Ω \ S
and Ω \ S is open.

Now let E = Ω,Ω1 = S,Ω2 = Ω \ S. Then we have

E ∩ Ω1 = S 6= 0 (10)

E ∩ Ω2 = Ω \ S (11)

E ∩ Ω1 ∩ Ω2 = ∅ (12)

E = Ω1 ∪ Ω2 (13)

but Ω was assumed connected, so Ω \ S must be empty.
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Now suppose Ω is open and piecewise linear path connected. Assume for
contradiction that Ω is not connected and let Ω1,Ω2 be a disconnection, that is
open sets such that:

Ω1,Ω2 6= ∅ (14)

Ω1 ∩ Ω2 = ∅ (15)

Ω1 ∪ Ω2 = Ω (16)

Let x1 ∈ Ω1,x2 ∈ Ω2. By assumption there exists a piecewise linear path
from x1 to x2 in Ω, hence there is a continuous map α : [0, 1] → R2 such that
α (0) = x1 and α (1) = x2. Let E = α ([0, 1]), then E is connected as it is the
continuous map of a connected set. Then we have that

E ∩ Ω1, E ∩ Ω2 6= ∅ (17)

E ∩ Ω1 ∩ Ω2 = ∅ (18)

(E ∩ Ω1) ∪ (E ∩ Ω2) = E ∩ (Ω1 ∪ Ω2) = E (19)

so Ω1,Ω2 give a disconnection of E, a connected set. We conclude that Ω is
open.

We now give some examples of domains:

Example 1.13.

• Any open convex set is a domain, hence D (x, r) is always a domain.

• A punctured disk D (x, r) \ {x} is a domain.

• An annulus
{
y ∈ R2 | R1 < |x− y| < R2

}
centered at x ∈ R2 is a domain.

Definition 1.14. A set E ⊆ R2 is bounded if there is an r ∈ R such that
E ⊆ D (0, r).

Notation 1.15. For a set E ⊆ R2 we write EC := R2 \ E to denote the
complement.

Definition 1.16. A set E ⊆ R2 is closed if its complement EC is open.

This immediately implies from (1.7) that intersections of closed sets are
closed and finite unions of closed sets are closed.

Definition 1.17. A set E ⊆ R2 is compact if it is closed and bounded

Recall 1.18. Continuous images of compact sets are compact.

Corollary 1.19. (EVT) Let f : E ⊆ R2 → R bs continuous on E, with E
compact. Then f attains a global max and min on E.

Definition 1.20. Let E ⊆ R2 and let x ∈ E. We say that x is a boundary
point of E if ε > 0 we have

D (x, ε) ∩ E,D (x, ε) ∩ EC 6= ∅ (20)

Example 1.21.
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• Let E = D (x, r), then each y ∈
{
z ∈ R2 | |x− z| = r

}
is a boundary

point of E.

• Let E = D (x, r), then the boundary points are the same as the prior
example.

Definition 1.22. For a set E ⊆ R2 we write ∂E to denote the set of all
boundary points of E.

Remark 1.23.

• A set E is open iff E ∩ ∂E = ∅ and closed iff E ∩ ∂E = E

• For a set E, we have ∂E = ∂EC

Example 1.24. Let Ω =
{

(x, y) ∈ R2 | y > 0
}

(upper half plane). Then Ω is a
domain and ∂Ω is the x-axis.

1.2 Curves in R2

Definition 1.25. A smooth curve in R2 is a map α : [a, b] → R2 such that
α (t) = (α1 (t) , α2 (t)) where:

α ∈ C1 ([a, b]) (21)

α′ (t) = (α′1 (t) , α′2 (t)) 6= 0 (22)

Example 1.26. Let R > 0, then α (t) = (R cos (t) , R sin (t)) for t ∈ [0, 2π] is a
smooth curve. Notice that |α′ (t)| = R > 0, and α is obviously smooth.

Definition 1.27. A piecewise smooth curve in R2 is a continuous map α :
[a, b]→ R2 and a decomposition

a = t0 < t1 < · · · < tn = b (23)

such that α|[ti−1,ti]
: [ti−1, ti]→ R2 is a smooth curve.

Definition 1.28. A curve α : [a, b] → R2 is simple if both α|(a,b] , α|[a,b) are
injective.

Definition 1.29. A curve α : [a, b]→ R2 is closed if α (a) = α (b).

Let α : [a, b]→ R2 be a curve in R2, then

Definition 1.30. The length of α is

L (α) =

∫ b

a

|α′ (t)|dt (24)

Example 1.31. Let α (t) = (R cos (t) , R sin (t)), then we have that α′ (t) =
(−R sin (t) , R cos (t)) and so |α′ (t)| = R. We then get that

L (α) =

∫ 2π

0

|α′ (t)|dt = 2πR
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Definition 1.32. A reparametrization of a curve α : [a, b] → R2 is a smooth
bijective map h : [c, d]→ [a, b] such that h is piecewise smooth and either{

h′ (t) > 0 t ∈ [c, d] orientation preserving

h′ (t) < 0 t ∈ [c, d] orientation reversing

so that α̃ : [c, d] → R2 given by α̃ (s) = α ◦ h (s) is a piecewise smooth curve
whose image is the same as that of α and that passes through each point in the
image the same number of times as α and in the same direction (if h preserves
orientation) or the opposite direction (if h reverses orientation).

Note that α̃ must be smooth by the chain rule. Also note that if h is
orientation preserving we have α̃ (c) = α (a) and α̃ (d) = α (b) and viceversa if
h is orientation reversing.

Proposition 1.33. Let α̃ = α ◦ h be a reparematerization of α, then L (α) =
L (α̃).

Proof. Notice first that

|α̃′ (s)| = |α′ (h (s))| |h′ (s)| (25)

so we have:

L (α̃) =

∫ d

c

|α̃′ (s)|ds (26)

=

∫ d

c

|α′ (h (s))| |h′ (s)|ds (27)

=

{ ∫ d
c
|α̃′ (s)| dh

dsds h′ (s) > 0∫ d
c
|α̃′ (s)| − dh

dsds h′ (s) < 0
(28)

=

∫ b

a

|α′ (t)|dt (29)

= L (α) (30)

Theorem 1.34. (Reparameterization by arclength)
Let α : [a, b] → R2 be a curve, then there exists a unique orientation pre-

serving reparameterization h : [0, L (α)] → [a, b] such that α̃ := α ◦ h has unit
speed (|α̃′ (s)| = 1).

Proof. Assume α is smooth, we seek a bijection h : [0, L] → [a, b] such that
α̃ ◦ h (s) has unit speed.

Let t = h (s) =⇒ s = h−1 (t) := f (t). Note that f (t) must be
∫ t
a
|α′ (u)|du.

We know that f is differentiable with f ′ (t) = |α′ (t)| and there exists an inverse
h such that h ∈ C1 ([a, b]). We also have that

f ′ (h (s))h′ (s) = 1 =⇒ h′ (s) =
1

f (h (s))
=

1

f ′ (t)
=

1

|α′ (t)|
(31)

Set α̃ (s) := α (h (s)), by the above α̃′ (s) = 1. Suppose α is piecewise smooth,
then we do the same thing on each interval [ti−1, ti]. Uniqueness follows by
uniqueness of antiderivative.
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Note 1.35. From now on, all curves are parameterized by arclength.

Definition 1.36. A Jordan curve is a curve α : [a, b] → R2 that is simple and
closed

Theorem 1.37. (Jordan Curve Theorem)
Let α : [a, b] → R2 be a Jordan curve with image Γ = α ([a, b]). Then

R2 \Γ consists of 2 disjoint domains, one of which is bounded and one of which
is unbounded. Each domain has Γ as its boundary. If a point inside Γ is
connected to a point outside Γ by a curve, then the curve must intersect Γ.

Proof. (ommited)

Definition 1.38. A Jordan domain is a bounded domain Ω such that its bound-
ary is the union of finitely many images of Jordan curves. We choose to orient
each of these Jordan curves so that, as we traverse the curve in the direction of
its orientation, the Jordan domain lies on the left side.

1.3 Vector fields and line integrals

Let Ω be a Jordan domain with boundary ∂Ω and let Γ be one of the Jordan
curves in ∂Ω. WLOG, let Γ be parameterized by arclength. We then have that
α (s) = (α1 (s) , α2 (s)) for s ∈ [0, L] where L = L (α). Let T (s) = α′ (s) =
(α′1 (s) , α′2 (s)) be the unit tangent vector field to α.

Definition 1.39. The outward normal vector field N to α is defined to be
N (s) = (α′2 (s) ,−α′1 (s)). Note that we have |N (s)| = |T (s)| = 1 so it makes
sense to call this a unit vector field. Note also that 〈N (s) , T (s)〉 = 0, so it is
perpendicular to T , and moreover is obtained by rotating the vector field T 90◦

clockwise (so that N (s) points outwards according to our convention for Jordan
domains).

Example 1.40. Let α (s) =
(
R cos

(
s
R

)
, R sin

(
s
R

))
, then

T (s) = α′ (s) =
(
− sin

( s
R

)
, cos

( s
R

))
N (s) =

(
cos
( s
R

)
,− sin

( s
R

))
Let Ω be a Jordan domain and let z0 ∈ ∂Ω and let N (z0) be the outward

pointing unit normal vector. Let W ⊇ Ω∪∂Ω. Let u ∈ C1 (W ) be a continuously
differentiable function from W to R.

Definition 1.41. We write ∂u
∂n (z0) := DN(z0)u = ∇u (z0) · N (z0) for the di-

rectional derivative of u at z0 in the direction N (z0).

Definition 1.42. (Laplacian)
Let W be open and let u ∈ C2 (W ). We define the Laplacian of u to be

∆u := uxx + uyy ∈ C0 (W ) (32)

Definition 1.43. Let Ω be open, a vector field F on Ω is a map F : Ω → R2

given by F (x, y) = (P (x, y) , Q (x, y)) where P,Q : Ω→ R. We say that F is a
Ck vector field on Ω if both P,Q ∈ Ck (Ω). We always assume F is atleast C0.
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Example 1.44.

• F (x, y) = (−y, x)

• F (x, y) =

(
x√
x2+y2

, y√
x2+y2

)
Let α : [a, b] → R2 be a curve and suppose that α ([a, b]) ⊆ Ω. Let F be a

C0 vector field on Ω. Suppose that α (t) = (α1 (t) , α2 (t)) = (x (t) , y (t))

Definition 1.45. The line integral of the vector field F along the curve α is
defined to be∫

α

F · dr :=

∫ b

a

F (α (t)) · α′ (t) dt (33)

=

∫ b

a

P (x (t) , y (t)) · x′ (t) dt+

∫ b

a

Q (x (t) , y (t)) · y′ (t) dt (34)

Notation 1.46. Some authors write
∫
α
Pdx+Qdy for the same line integral.

Example 1.47. Let α (t) = (R cos (t) , R sin (t)) and F (x, y) = (−y, x). then
we have ∫

α

F · dr =

∫ 2π

0

R2dt = 2πR2

Proposition 1.48. The line integral is independent of reparameterization as
long as the orientation is preserved.

Proof. Let α̃ (s) = α (h (s)) for c ≤ s ≤ d be a reparameterization. We have
α̃′ (s) = α′ (h (s))h′ (s). Then we have∫

α

F · dt =

∫ b

a

F (α (t))α′ (t) dt (35)

=

∫ d

c

F (α (h (s)))α′ (h (s))h′ (s) ds (36)

=

∫ f

c

F (α̃ (s)) α̃′ (s) ds (37)

=

∫
α̃′
F · dr (38)

From the above proof, we can easily see that∫
α

F · dr = −
∫
−α

F · dr (39)

where −α is the reversal of the curve α.
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1.4 Green’s Theorem and Green’s Identities

Theorem 1.49. (Green’s Theorem)
Let Ω be a k-connected Jordan domain and let F be a C1 vector field on a

domain Ω+ ⊇ Ω. Then ∫
∂Ω

F · dr =

∫∫
Ω

(Qx − Py) dA (40)

Proof. (ommitted)

Fix for now that Ω is a domain and Ω+ is a domain containing Ω. Also let
u, v ∈ C2 (Ω+) be functions u, v : Ω+ → R.

Definition 1.50. We define
∫
∂Ω

∂u
∂nds as follows. Let F (x, y) = (−uy, ux) and

note this is a C0 vector field. Let α : [0, L] → R2 be the arclength parameteri-
zation of ∂Ω. Then we have∫

α

F · dr =

∫ L

0

F (α (t))α′ (t) dt (41)

=

∫ L

0

(−uyx′ + uxy
′) dt (42)

=

∫ L

0

(ux, uy) · (y′,−x′) dt (43)

=

∫ L

0

∇u (α (t)) ·N (t) dt (44)

=

∫ L

0

∂u

∂n
(t) dt (45)

Theorem 1.51. (Green’s First Identity)∫∫
Ω

∇u · ∇vdA =

∫
∂Ω

u
∂v

∂n
ds−

∫∫
Ω

u∆vdA (46)

Proof. Let F (x, y) = (−uvy, uvx), then we have∫
∂Ω

u
∂v

∂n
ds =

∫
∂Ω

(−uvydx+ uvxdy) (47)

=

∫
∂Ω

F · dr (48)

=

∫∫
Ω

(Qx − Py) dA (49)

=

∫∫
(uxvx + uvxx − (−uyvy − uvyy)) dA (50)

=

∫∫
Ω

[∇u · ∇v + u∆v] dA (51)

Theorem 1.52. (Green’s Second Identity)∫
∂Ω

(
v
∂u

∂n
− u∂v

∂n

)
ds =

∫∫
Ω

(v∆u− u∆v) dA (52)
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Proof. Interchange u and v on LHS side of #1 and subtract together.

Corollary 1.53. (Inside-Outside Theorem)∫
∂Ω

∂v

∂n
ds =

∫∫
Ω

∆vdA (53)

Proof. Let u = 1 above.

Lemma 1.54. Let x0 ∈ R2 be fixed and let x ∈ R2 be a variable point. Define
r (x) := |x− x0|. Then log r (x) is harmonic on R2 \ {x}.

Proof. Compute the Laplacian

Theorem 1.55. (Green’s Third Identity) Fix x0 ∈ R2 and let r (x) be as above
(in terms of x0), then

u (x0) =
1

2π

∫∫
Ω

log (r) ∆udA− 1

2π

∫
∂Ω

(
log (r)

∂u

∂n
− v ∂ log (r)

∂n

)
ds (54)

Proof. Let ε > 0 such that D (x0, ε) ⊆ Ω. Apply Green’s second identity to

Ω \D (x0,Ω) with v = log r. We have that ∂
(

Ω \D (x0, ε)
)

= ∂Ω ∪ C (x0, ε)

and on C (x0, ε) we have that v = log ε. We also have

∂u

∂n
= −∂v

∂r
= −1

r
(55)

so we get that∫
∂Ω

(
log r

∂u

∂n
− u ∂

∂n
(log r)

)
ds+

∫
C(x0,ε)

(
(log ε)

∂u

∂n
−
(
−1

ε

)
u

)
ds (56)

=

∫∫
Ω\D(x0,ε)

(log r) ∆udA (57)

Now, on C (x0, ε) we have s = εθ, so ds = εdθ. So∫
C(x0,ε)

[
log ε

∂u

∂n
+

1

ε
u

]
ds =

∫ 2π

0

[
log ε

∂u

∂n
+

1

ε
u

]
εdθ (58)

= ε log ε

∫ 2π

0

∂u

∂n
dθ +

∫ 2π

0

u (ε, θ) dθ (59)

= ε log εK + 2πu (ε, θε) (60)

→ 2πu (x0) as ε→ 0 (61)

and the result follows by rearrangement.

2 Harmonic Functions
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