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Abstract

Smooth manifold theory is the first step towards differential geometry. We start with linear
algebra, considering finite dimensional real vector spaces and linear maps between them (ie: F :
Rn ∼= V → V ∼= Rm). We then get to calculus where we still consider maps from Rn → Rm,
albeit with the linearity condition lifted - instead we restrict to maps with good smoothness (for
some notion of smoothness) (ie: if F : Rn → Rm is C1 near some p ∈ Rn then F is close to its
linearization/differential/total derivative at p; that is, (DF )p : Rn → Rm is linear and a good
approximation of F near p) (to make things easier, we will often assume that maps are C∞). Finally,
for smooth manifold theory we allow the spaces (domain and codomain of F ) to be “nonlinear” (ie:
not vector spaces) but now we want our spaces to be locally well approximated by linear spaces
(whereas in calculus we wanted our maps to be well approximated by linear maps near a point).

1 Overview

We will start by being vague for the sake of intuition and formalize these notions later. Roughly speaking,
a manifold is a “space” that is well approximated by a linear vector space near each point. The
prototypical picture for maps between manifolds is:
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Near p, M is “almost” linear and near F (p), N is “almost” linear. F is “almost” a linear map
between a neighborhood (nbhd) of p in M and a nbhd of F (p) in N .

Essentially, a manifold is a “space” on which we can do calculus1 (this isn’t quite true, integration
will work and differentiating once will work2). Note that we can impose additional structure on a smooth
manifold (still undefined) to be able to do differential geometry.

2 Topology and Topological Manifolds

We’ll begin with general topological spaces3. In this section we will cover topological spaces, continuity,
subspaces, product spaces, quotient spaces, the Hausdorff property, connectedness, compactness, etc.

2.1 Topological Spaces

Definition Let X be a set. A topology on X is a collection T of subsets on X, called open sets
satisfying:

(i) ∅, X ∈ T

(ii) If U1, . . . , Uk ∈ T then
⋂k
i=1 Ui ∈ T (finite intersections of open sets are open)

(iii) If Uα ∈ T for α ∈ A then
⋃
α∈A Uα ∈ T (arbitrary unions of open sets are open)

The pair (X, T ) is called a topological space. Sometimes, when the topology is understood by the
context, we simply write X.

Remark A given set X can have many different topologies.

Example The standard example which guides our intuition is Rn with the usual (metric) topology where
a subset U is open iff ∀p∈U∃ε>0B (p, ε) ⊆ U .

Exercise Show that the metric topology on Rn is a topology in the sense of the above definition.

More generally, the following are also topologies:

Example

1Of course, we already know that we can do calculus on any finite dimensional real vector space. Calculus on infinite
dimensional real vector spaces is the realm of functional analysis, and calculus on non-linear finite dimensional spaces is
the study of this course.

2To differentiate more then once, you need a Riemannian metric.
3It turns out that the topology of a smooth manifold is induced by a metric; regardless, we begin with the more general

topological space.
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• The trivial topology on X where T = {∅, X} (this is the smallest possible topology in the sense of
set inclusion).

• The discrete topology on X where T = P (X) (largest topology possible in the sense of set inclusion).

• If (X, d) is a metric space then T = {B (p, ε) : ε > 0, p ∈ X} is a topology.

Definition Let (X, T ) be a topological space and let p ∈ X. A neighborhood (nbhd) U of p is an
open set containing p.

Definition Let (pk) be a sequence in X. We say the (pk) converges to p ∈ X iff for any nbhd U of p,
there exists some N ∈ N such that k ≥ N =⇒ pk ∈ U .

Exercise Show that the above definition is equivalent to the ε− δ definition of convergence in a metric
space.

Example Metric spaces are very well behaved but a general topological space is not necessarily. For
example

• In the trivial topology, any sequence (pk) converges to any point q (too few open sets).

• In the discrete topology, the only convergent sequences are those which are eventually constant
(too many open sets).

In other words, the nature of the topology is very important.

2.2 Continuity

Let (X, d1) , (Y, d2) be metric spaces. Recall that a map f : X → Y is continuous iff

∀p∈X∀ε>0∃δ>0f (B (p, δ)) ⊆ B (f (p) , ε)

Unfortunately, general topological spaces have no notion of distance so the above definition makes no
sense.

Claim If X,Y are metric spaces and f : X → Y then f is continuous if and only if for all open sets U
in Y we have that f−1 (U) is open in X.

Proof. Suppose the latter holds and let p ∈ X, ε > 0. Let U = B (f (p) , ε), then U is open in Y so
f−1 (U) is open in X. Also, p ∈ f−1 (U) because f (p) ∈ U . It follows that there is some δ > 0 such that
B (p, δ) ⊆ f−1 (U) and therefore we get that f (B (p, δ)) ⊆ U = B (f (p) , ε).

Now suppose the former holds, let U ⊆ Y open and let p ∈ f−1 (U). Then f (p) ∈ U so there is
some ε > 0 such that B (f (p) , ε) ⊆ U . By assumption, there is some δ > 0 such that f (B (p, δ)) ⊆
B (f (p) , ε) ⊆ U so B (p, δ) ⊆ f−1 (U) and f−1 (U) is open.

Notice that this reformulation only uses notions of open sets, thus we extend the definition of continuity
to topological spaces using it.

Definition Let X,Y be topological spaces. Let f : X → Y be a function. We say that f is continuity
iff for all U ⊆ Y open, f−1 (U) is open in X.

Lemma Let X,Y, Z be topological spaces.

• Any constant map f : X → Y is continuous.

• The identity map IdX : X → X is continuous.

• If f : X → Y and g : Y → Z are both continuous then g ◦ f : X → Z is continuous.

Proof.

• Let U ⊆ Y be open. Suppose that {q} ⊆ U , then f−1 (U) = X is open. Otherwise {q} 6⊆ U and
f−1 (U) = ∅ is open.

• This is trivial since f−1 (U) = U .

• (g ◦ f)
−1

(U) = {p ∈ X : g (f (p)) ∈ U} =
{
p ∈ X : f (p) ∈ g−1 (U)

}
= f−1

(
g−1 (U)

)
is open.

3



Definition Let X,Y be topological spaces. A map f : X → Y is called a homeomorphism if f is
a bijection and both f, f−1 are continuous. We say that X and Y are homeomorphic if there is a
homeomorphism between them.

Remark Homeomorphism is an equivalence relation (reflexivity and transitivity follow from earlier lemma,

symmetry follows by switching f, f−1 and noting that
(
f−1

)−1
= f).

Homeomorphic topological spaces are “equivalent” in the sense that they preserve topological proper-
ties.

Definition Let X be a topological space and let U be an open subset of X. We can define a topology
on U by declaring a subset V of U to be open in U iff it is open in X. This is called the Subspace
Topology4.

Definition Let X,Y be topological spaces and let U ⊆ X be open. Let f : X → Y be a map, we write
f |U : U → Y for the restriction of f to U . That is, f |U (p) = f (p) for all p ∈ U .

Lemma Let f : X → Y with X,Y topological spaces.

• If f is continuous then so is f |U : U → Y .

• More generally, f is continuous if and only if every p ∈ X has an open neighborhood Up in X such
that f |Up

is continuous.

In other words, continuity is a local property.

Proof. Notice first that f |−1U (V ) = {p ∈ U : f (p) ∈ V } = U ∩ f−1 (V ) for all V ⊆ Y .

• Suppose f is continuous and let V ⊆ Y be open, then f |−1U (V ) = U ∩ f−1 (V ) is open as it is the
intersection of two open sets.

• Suppose f is continuous, let p ∈ X, and let Up be any open neighborhood in X of p. By the above,
f |Up

is continuous. Conversely suppose every p ∈ X has an open neighborhood Up such that f |Up

is continuous. Let V ⊆ Y be open, then f−1 (V ) =
⋃
p∈X f

−1 (V ) ∩ Up. Rewriting the RHS, we

get that f−1 (V ) =
⋃
p∈X f |−1Up

(V ) is a union of open sets (by continuity), hence f is continuous.

Example Examples of homeomorphisms:

• Let X = B (p, δ) ∈ Rn and consider the map f : Rn → Rn : q 7→ q − p. The map F = f |X is a
homeomorphism B (p, δ)→ B (0, δ).

• Let g : Rn → Rn : p→ 1/δp then g|B(0,δ) is a homeomorphism to B (0, 1).

Together, these examples show that the size of a ball is not preserved by homeomorphisms.

Even worse, consider the map H : B (0, 1) → Rn : p 7→ p/1−‖p‖. Notice that H is invertible with
H−1 (q) = q/1+‖q‖. Notice further that both maps are continuous so Rn is homeomorphic to B (0, 1) and
the notion of boundedness is not preserved by homeomorphisms.

Remark We will see later that there can be a continuous bijection between topological spaces that is not
a homeomorphism (ie: inverse is not continuous).

2.3 Interior and Closure

Definition Let X be a topological space. A subset F ⊆ X is called closed if its complement FC = X \F
is open.

Remark A subset A of X can be open, closed, neither, or both.

Example

4Technically the subspace topology doesn’t require U to be open but we’ll get to that later.
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• ∅, X are closed.

• Arbitrary intersections of closed sets are closed.

• Finite unions of closed sets are closed.

Where the last two of the above follow from DeMorgans Laws.

Lemma Let X,Y be topological spaces and f : X → Y . Then f is continuous if and only if for all closed
B ⊆ Y we have that f−1 (B) is closed in X

Proof. Notice that f−1 (Ac) = {p ∈ X : f (p) ∈ Ac} =
[
f−1 (A)

]c
. Given that, the lemma follows by the

definition of continuity by taking complements.

Let A be a subset of X.

Definition We define the closure of A, denoted cl (A) = Ā =
⋂

F⊇A
F closed

F , to be the intersection of all

closed sets containing A.

Clearly Ā is closed and Ā ⊇ A. Moreover, Ā is the smallest closed set containing A in the sense of
set inclusion.

Definition We define the interior of A, denoted intA = A◦ =
⋃

U⊆A
U open

U to be the union of all open

sets contained in A.

Clearly A◦ is open and A◦ ⊆ A. Moreover, A◦ is the largest open set contained in A in the sense of
set inclusion.

Lemma

• A is closed if and only if A = Ā.

• A is open if and only if A = A◦.

Proof.

• If A = Ā then A is closed. Suppose now that A is closed, then A is a closed set containing A and
we have A ⊆ Ā ⊆ A =⇒ A = Ā.

• If A = A◦ then A is open. Suppose now that A is open, then A is a open set contained in A and
we have A ⊆ A◦ ⊆ A =⇒ A = A◦.

Proposition Let A ⊆ X, then (A◦)
c

= (Ac) and
(
Ā
)c

= (Ac)
◦
. In other words, the complement of

the interior is the closure of the complement and the complement of the closure is the interior of the
complement.

Proof. We have

A◦ =
⋃
U⊆A
U open

U =⇒ (A◦)
c

=

 ⋃
U⊆A
U open

U


c

=
⋂

Uc⊇Ac

Uc closed

U c =
⋂

F⊇Ac

F closed

F = (Ac)

and similarly we get that

(
Ā
)c

=

 ⋂
F⊇A

F closed

F


c

=
⋃

F c⊆Ac

F c open

F c =
⋃

U⊆Ac

U open

U = (Ac)
◦
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2.4 Exterior and Boundary

Definition Let A be a subset of X. The exterior of A is defined to be the interior of its complement.
That is, ext (A) = int (Ac).

By the previous proposition, we have ext (A) = (Ac)
◦

=
(
Ā
)c

= X \ cl (A).

Remark int (A) ⊆ A and ext (A) =
∫

(Ac) ⊆ Ac. Since A ∩ Ac = ∅, it follows that the interior and the
exterior of A are disjoint open sets.

Definition The boundary of A, denoted by ∂A, is defined by ∂A := X \ (int (A) ∪ ext (A)) =
(int (A) ∪ ext (A))

c
= (int (A))

c ∩ (ext (A))
c
.

Remark

• ∂A is always closed since it is the complement of a union of open sets.

• We can write X = int (A) t ∂A t ext (A) (here we use t for disjoint union).

From above, we have that ∂A = (intA)
c ∩ (extA)

c
. Recall that ext (A) = int (Ac), so ext (A)

c
=

(int (Ac))
c

= cl ((Ac)
c
) = cl (A). Therefore, ∂A = (intA)

c ∩ Ā = Ā \ (intA). Hence we have that
X = (intA) t ∂A t (extA) = Ā t (extA) and also that Ā = intA ∪ ∂A. The picture is:

intextdb.png

Thus a set A contains all of its interior points, it contains none of its exterior points and it contains
none, some, or all of its boundary points.

Lemma Let A ⊆ X.

• p ∈ intA iff p has a nbhd contained in A

• p ∈ extA iff p has a nbhd contained in Ac.

• p ∈ ∂A iff every nbhd of p contains both a point in A and a point in Ac.

Proof. The first is obvious since p ∈ intA means there is some open set containing p and contained in
A - this set is a nbhd of p in A. The second follows from the first. Finlly, to prove the third, recall that
∂A = X \ (intA ∪ extA) so p ∈ ∂A ⇐⇒ p /∈ int (A) and p /∈ ext (A). Using the two previous parts, we
see that this happens iff every nbhd of p contains a point in Ac and a point in A.

Definition Let A ⊆ X and let p ∈ X (not necessarily in A). We say that p is a limit point of A (also
called an acucmulation point or a cluster point of A) if and only if every neighborhood of p contains
a point of A other then p.

Lemma A is closed if and only if A contains all of its limit points.

Proof.

A closed ⇐⇒ Ac open

⇐⇒ ∀p∈X\A∃U⊆X\A openp ∈ U
⇐⇒ ∀p∈X\Ap is not a limit point of A

⇐⇒ every limit point of A is contained in A
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2.5 Basis for Topological Spaces

Let (X, T ) be a topological space

Definition A basis for the topology T on X is a sub collection B ⊆ T of the open sets with the following
property:

• If U ∈ T and p ∈ U then there is some V ∈ B such that p ∈ V ⊆ U

Here is a picture:

topbasis.png

Remark Any topological space has a basis by simply taking B = T (thus taking V = U).

Claim If B is a basis for the topology T then any U ∈ T can be written as a union of elements of B.

Proof. Let U ∈ T , then for all p ∈ U∃Vp∈T p ∈ Vp ⊆ U . We then have U =
⋃
p∈U Vp.

To emphasize: Any open set is a union of basis open sets (no notion of uniqueness unlike a basis
in linear algebra). The importance of this is that if a topology T admits a “simple” basis B then it is
“easier” to deal with. Generally speaking, we want B to be much smaller then T since a small basis means
the space is “not too big”.

The following shows the usefulness of a simple basis.

Claim Let X,Y be topological spaces and let B be a basis for the topology on Y . A map f : X → Y is
continuous iff f−1 (V ) is open in X for all V ∈ B.

Proof. Let U ⊆ Y be open, then U =
⋃
α∈A Vα for some Vα ∈ B. We can verify that

f−1 (U) = f−1

(⋃
α∈A
Vα

)
=
⋃
α∈A

f−1 (Vα)

which is a union of open sets in X by assumption, hence it is open.

Example Consider Rn with the standard topology, then Rn has a countable basis. To see this, let
B = {B (q, s) : q ∈ Qn, s ∈ Q>0}. Clearly B is countable and its being a basis essentially follows from the
density of the rationals.

Notice that Rn has uncountably many open sets, so this is somewhat remarkable.

Lemma Let (X, T ) be a topological space and suppose there exists a countable basis B of T . Then any
open cover of X admits a countable subcover. In other words, if X =

⋃
α∈A Uα with Uα open then there

exists some countable A′ ⊆ A such that X =
⋃
α∈A′ Uα.

Proof. Let B′ be the subcollection of elements of B consisting of those basis open sets entirely contained
in some Uα for α ∈ A. Notice that B′ is still countable. For each B ∈ B′ there is some α (B) ∈ A such
that B ⊆ Uα(B). Let p ∈ X, then there is some Uα such that p ∈ Uα. So there is some B ∈ B such
that p ∈ B ⊆ Uα. Hence B ∈ B′ and so X =

⋃
B∈B′ B. Let A′ = {α (B) : B ∈ B′} and notice that A′ is

countable and that X =
⋃
α∈A′ Uα.

We say that X is countably compact of Lindelof if it has the above property.
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2.6 Hausdorff Spaces

Definition Let X be a topological space. We say that X is Hausdorff iff whenever p, q ∈ X are distinct
points there are U, V open in X such that p ∈ U, q ∈ V and U ∩ V = ∅.

The picture is:

hausdorff.png

In other words, in a Hausdorff space we can separate points with open sets.

Example

• Suppose (X, d) is a metric space, then X is Hausdorff.

• The trivial topology is not Hausdorff since the only open set containing p and q is X.

• The discrete topology is always Hausdorff.

Lemma Let X be a Hausdorff topological space, then:

(a) The singleton sets {p} are all closed.

(b) Limits are unique.

Proof.

(a) Let p ∈ X and pick q ∈ X \ {p}. Since X is Hausdorff there are U, V open such that p ∈ U, q ∈
V and U ∩ V = ∅. This implies that V ⊆ X \ {p}, hence q is an interior point of X \ {p}. Thus
since every point of X \ {p} is an interior point, X \ {p} is open and {p} is closed.

(b) Suppose that (pk) converges to p and p′ where p 6= p′. Since X is Hausdorff, there are U 3 p, V 3 p′
open with U ∩ V = ∅. However, we eventually have pk in both U and V , a contradiction.

2.7 Topological Manifolds

Definition Let (X, T ) be a topological space. We say that (X, T ) is a topological manifold of
dimension n (or a topological n-manifold) if the following three conditions hold:

(i) X is Hausdorff.

(ii) X has a countable basis5.

(iii) X is locally Euclidean of dimension n.

This is great, of course, but we need to define locally Euclidean.

Definition We say that X is locally Euclidean of dimension n if for every p ∈ X there is some open
nbhd U of p and a map ϕ : U → Rn such that ϕ is a homeomorphism from U to ϕ (U). Hence “locally
Euclidean of dimension n” means that every point in X has a nbhd that is homeomorphic to an open
subset of Rn.

The picture is:

5This is a technical condition to ensure the existence of partitions of unity - more later.
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Example

• X = Rn is a topological n-manifold since ∀p∈X we can take U = X = Rn and ϕ : Rn → Rn the
identity.

• If U ⊆ Rn is open it is also a topological n-manifold for the same reason.

That is, every open subset of Rn is (trivially) a topological manifold and we only need one (coordinate)
chart.

2.8 Subspace Topology

Let X be a topological space and let Y ⊆ X be a subset of X. Our goal is to define a topology on Y
that is induced by the topology on X.

Definition Define TY {V ⊆ Y : V = U ∩ Y for some U ⊆ X open in X}. This TY is called the sub-
space topology.

We can verify that TY is indeed a topology:

(i) ∅ = Y ∩∅ and Y = X ∩ Y and ∅, X are open in X.

(ii) If Vα is open in Y for α ∈ A then there are Uα open in X such that Vα = Uα ∩ Y . But then we
have

⋃
α∈A

Vα =
⋃
α∈A

Uα ∩ Y = Y ∩

(⋃
α∈A

Uα

)

where
⋃
α∈A Uα is open in X.

(iii) If V1, · · · , Vk are open in Y then there are U1, ·, Uk open in U such that Vi = Ui ∩Y . Then we have

k⋂
i=1

Vi =

k⋂
i=1

Ui ∩ Y = Y ∩

(
k⋂
i=1

Ui

)

where
⋂k
i=1 Ui is open in X.

Remark In the case that Y ⊆ X is open this agrees with our earlier definition since we have

V open in Y ⇐⇒ V = U ∩ Y for U open in X ⇐⇒ V open in X and V ⊆ Y

Example

• Let Rk ⊆ Rn by RK =
{(
x1, ·, xn

)
∈ Rn : xk+1 = · · · = xn = 0

}
, we can verify that the subspace

topology on Rk induced by the metric topology Rn is exactly the metric topology on Rk.

• Let X = R and let Y = [0, 1), then
[
0, 12
)

is open and Y and
[
1
2 , 1
)

is closed in Y .
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• Let X = [0, 1) with the subspace topology induced from R and let Y = S1 with the subspace
topology of R2. Define a map f : X → Y by f (t) = e2πit. Clearly f is a continuous bijection but
notice that f is not an open map (thus not a homeomorphism) because the image of

[
0, 12
)

is not
open in the topology of Y .

Definition Let X be a topological space and let Y ⊆ X be a topological with the subspace topology.
The map ι : Y → X taking ι (p) = p is called the inclusion map.

Claim The subspace topology is the smallest topology that makes the inclusion map continuous.

Proof. Let U ⊆ X be open and notice that ι−1 (U) = {p ∈ Y : ι (p) ∈ U} = U ∩ Y must be open in
Y .

Theorem (Characteristic Property of Inclusions) For any topological space Z, a map f : Z → Y is
continuous iff ι ◦ f : Z → X is continuous.

Proof. Suppose first that f is continuous, then since ι is continuous it follows that ι ◦ f is continuous.
Suppose now that ι ◦ f is continuous and let V ⊆ Y be open, then V = Y ∩U for some open U ⊆ X. We
then have

(ι ◦ f)
−1

(U) = {p ∈ Z : (ι ◦ f) (p) ∈ U} = {p ∈ Z : f (p) ∈ U ∩ Y = V } = f−1 (V )

is open hence f is continuous.

We list below several other properties of the subspace topology and inclusion maps

Claim f : X → Z continuous =⇒ f |Y : Y → Z continuous.

Proof. f |Y = f ◦ ι : Y → Z but ι is continuous so this composition is as well.

Claim If f : X → Z is continuous then f : X → f (X) is continuous (here f (X) is a topological space
with the subspace topology induced by X).

Proof.

f : X → f (X) continuous ⇐⇒ ι ◦ f : X → Z continuous

Claim A subset F ⊆ Y is closed in Y iff F = B ∩ Y for some closed set B in X

Proof. This essentially follows by taking complements of the corresponding result for open sets.

Claim Let B be a basis for X and let BY = {U ∩ Y : U ∈ B}, then BY is a basis for Y .

Proof. Let V ⊆ Y be open, then there is some U open in X such that V = U ∩ Y . Let p ∈ V , then
p ∈ U and there is some B ∈ B such that p ∈ B ⊆ U . Notice that since p ∈ Y we also get that
p ∈ B ∩ Y ⊆ U ∩ Y = V and also that B ∩ Y ∈ BY .

Corollary If X has a countable basis then so does Y ⊆ X.

Claim If X is Hausdorff then so is Y

Proof. Let p, q ∈ Y with p 6= q, then since p, q ∈ X there are disjoint open sets U, V ⊆ X such that
p ∈ U and q ∈ V . But then U ∩Y, V ∩Y are open in Y (and still disjoint) and we have p ∈ U ∩Y and q ∈
V ∩ Y .
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2.9 Examples of Topological Manifolds

This designates its own section as these are the first topological n-manifolds we’ve seen that are not just
an open subset open subset of Rn (although we will see many more later).

Example • Let U ⊆ Rn be open and let h : U → Rm be continuous. Define

Γh :−
{

(x, y) ∈ Rn+m : y = h (x)
}

this is called the graph of h. Endow Γh with the subspace topology on Rn+m and note that Γh is
Hausdorff and has a countable basis, thus to show that Γh is a topological n-manifold we must only
show that it’s locally Euclidean of dimension n. Define ϕ : U → Γh by ϕ (x) = (x, h (x)), then clearly
ϕ is a bijection with inverse ϕ−1 (x, h (x)) = x and ϕ. As a map from U → Rn+m, ϕ is continuous
(this is just calculus) and it follows that ϕ is continuous from U → Γh by subspace topology
properties proved earlier. Similarly, ϕ−1 is the restriction to Γh of the map Rn+m → Rn : (x, y)→ x
and is thus also continuous for a similar reason. It follows that ϕ is a homeomorphism and
ϕ−1 : Γh → U is a chart covering all of Γh, thus Γh is a topological n-manifold.

• The n-spere Sn is the subset of Rn+1 given by
{
x ∈ Rn+1 : ‖x‖`2 = 1

}
, we claim that Sn is a

topological n-manifold. As before, it follows immediately that Sn is both Hausdorff and has a
countable basis, so we must only show that it is locally Euclidean. Define for each 1 ≤ i ≤ n+ 1
the sets

U+
i :=

{
x ∈ Sn : xi > 0

}
and U−i :−

{
x ∈ Sn : xi < 0

}
These sets are clearly open and they cover Sn since

x ∈ Sn =⇒ ‖x‖`2 = 1 =⇒ x 6= 0 =⇒ ∃1≤i≤n+1x
i 6= 0

and since we clearly have U±i ⊆ Sn for all 1 ≤ i ≤ n+ 1 it follows that the U±i ’s exactly cover Sn.
Since on U±i we have that

xi = ±

√√√√√1−
n+1∑
j=1
j 6=i

(xj)
2

it follows that the points of U±i lie on the graph of a continuous function in Rn with domain{
x ∈ Rn : ‖x‖`2 < 1

}
(an open set). We saw in the above example that graphs of continuous

functions are homeomorphic to their domain, thus Sn is covered by open sets that are homeomorphic
to Rn and it follows that Sn is an n manifold. Here is a picture in R2 and R3:

nspherecover.png

2.10 Product Topology

Let X1, . . . , Xm be topological spaces and let Y = X1 × · · · × Xm. A point y ∈ Y is an m-tuple
y = (x1, . . . , xm) where each xi ∈ Xi. Our goal will be to endow Y with a natural topology, called the
product topology.

To do this, we will specify the basis B = {U1 × · · · × Um : Ui ⊆ Xi is open}. To see this is indeed a
topology amounts to verifying that ∅, X ∈ B, that arbitrary unions of arbitrary unions of elements of B
are in B, and that finite intersections of arbitrary unions of elements of B are still unions of elements in
B (all of these are trivial to show).
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Example R2 = R× R with the product topology. This is good because it indicates that there is only
one natural topology on common sets.

Remark We can take infinite products and still define a topology on the resulting set, and this is the
subject of courses in topology, but we will not do that.

Let X1, . . . , Xm be topological spaces and let Y be the product space X1 × · · · ×Xm. Define maps
πi : Y → Xi for all 1 ≤ i ≤ m by

πi (x1, . . . , xm) = xi

These πi’s are called the projection maps onto the i-th component.

Lemma The product topology is the smallest topology on Y that ensures that all the projections are
continuous.

Proof. Let Ui ⊆ Xi be open, then π−1i (Ui) = {y = (x1, . . . , xm) ∈ Y : πi (y) ∈ Ui} = X1 × . . .×Xi−1 ×
Ui × Xi+1 × · · · × Xm. So for πi to be continuous we need that π−1i (Ui) is open for all i, thus the
intersection

π−11 (U1) ∩ · · · ∩ π−1m (Um) = U1 × · · · × Um

must be open, but this is exactly the product topology.

Lemma (Characteristic property of the Prodcut Topology) Let Y =
∏m
i=1Xi be a product space. For

any topological space Z, a map h : Z → Y is continuous iff hi := πi ◦ h : Z → Xi is continuous.

Proof. Suppose that h is continuous, then clearly hi is the composition of continuous functions and
therefore continuous. Suppose now that each hi is continuous and let W ⊆ Y be some basis open set of
Y , then W = U1 × · · · × Um. Notice that

h−1 (W ) = {q ∈ Z : h (q) ∈W = U1 × · · · × Um}
= {q ∈ Z : (πi ◦ h) (q) ∈ Ui ∀1≤i≤m}
= h−11 (U1) ∩ · · · ∩ h−1m (Um)

which is a finite intersection of open sets and is therefore open.

Let X1, . . . , Xm be topological spaces

Proposition The product topology is associative in the sense that (X1 ×X2) ×X3 = X1 × (X2 ×X3)
as topological spaces.

Proof. The set {U1 × U2 × U3 : Ui ⊆ Xi is open} is a basis for both.

Proposition For all i and for any pj ∈ Xj with j 6= i the map fi : Xi → X1 × · · · × Xm given by
fi (p) = (p1, . . . , pi−1, p, pi+1, . . . , pm) is a continuous injection.

Proof. This map is clearly and injection, and using the characteristic property we see that all of its
projections are either constant or the identity, thus continuity follows.

Proposition Let Yi ⊆ Xi be a subspace for all 1 ≤ i ≤ m. The product topology on Y1 × · · · × Ym is the
same as the subspace topology of Y1 × · · · × Ym ⊆ X1 × · · · ×Xm.

Proof. They have the same basis: {
m∏
i=1

Yi ∩ Si : Si ⊆ Xi is open

}

Proposition If each Xi is Hausdorff then so is X1 × · · · ×Xm

Proof. Let p = (p1, . . . , pm) and let q = (q1, . . . , qm) be distinct points in X1×· · ·×Xm and let 1 ≤ j ≤ m
be such that pj 6= qj . Then there are disjoint open sets Pj , Qj ⊆ Xj such that pj ∈ Pj and qj ∈ Qj . It
follows that P := X1 × . . .×Xj−1 × Pj ×Xj+1 ×Xm and Q := X1 × · · · ×Xj−1 ×Qj ×Xj+1 ×Xm are
disjoint open sets in Y that separate p and q.
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Proposition If each Xi has a countable basis then then so does X1 × · · · ×Xm

Proof. Let Bi be a basis for Xi and let B = B1 × · · · × Bm. Let p ∈ X1 × · · · × Xm and let U be
an open set containing p. By definition of the product topology, there are U1 × · · · × Um such that
p ∈ U1 × · · · × Um ⊆ U and thus pi ∈ Ui. By definition of Bi, there is some Bi such that p ∈ Bi ⊆ Ui,
thus we have

p ∈ B1 × · · · ×Bm ⊆ U1 × · · · ×Bm ⊆ U

and since the product of countable sets is countable, it follows that B is a countable basis for the product
space.

Remark Just as for subspaces, the Hausdorff property and the countable basis property are preserved
under this construction.

Definition Let X1, . . . , Xm, Y1, . . . , Ym be topological spaces and let fi : Xi → Yi be maps. The
product map f1×· · ·×fm : X1×· · ·×Xm → Y1×· · ·×Ym is defined by (f1 × · · · × fm) (p1, . . . , pm) =
(f1 (p1) , . . . , fm (pm)).

Lemma A product of continuous maps is continuous and a product of homeomorphisms is a homeomor-
phism.

Proof. Suppose that f1, . . . , fm are continuous and let Vi ⊆ Yi be open, then we have

(f1 × · · · × fm)
−1

(V1 × · · · × Vm) = {(p1, . . . , pm) ∈ X1 × · · · ×Xm : (f1 × · · · × fm) (p1, . . . , pm) ∈ V1 × · · · × Vm}
= {(p1, . . . , pm) ∈ X1 × · · · ×Xm : fi (pi) ∈ Vi}
= f−11 (V1) ∩ · · · ∩ f−1m (Vm)

which is a finite intersection of continuous sets, thus the product map is continuous.
Suppose now that each fi is a homeomorphism, then fi is a bijection with continuous inverse f−1i :

Yi → Xi. Clearly we have (f1 × · · · × fm)
−1

= f−11 × · · · × f−1m which is again the product of continuous
functions, thus the product map is a homeomorphism.

Corollary Let M1, . . . ,Mm be topological manifolds of dimension n1, . . . , nm respectively. Then the
product M1 × · · · ×Mm is also a topological manifold of dimension n1 + · · ·+ nm.

Proof. The Hausdorff and countable basis property are immediate so we only show that this is locally
Euclidean. Let p = (p1, . . . , pm) ∈ M1 × · · · ×Mm, then pi ∈ Mi and there is an open neighborhood
Ui ⊆Mi of pi and a homeomorphism (chart) ϕi : Ui → ϕi (Ui) ⊆ Rni . By the previous result, we know
that ϕ1×· · ·×ϕm is a homeomorphism from the open neighborhood U1×· · ·×Um of p in M1×· · ·×Mm

to the open set ϕ1 (U1)×· · ·×ϕm (Um) in Rn1 ×· · ·×Rnm ∼= Rn1+···+nm . Hence M1×· · ·×Mm is locally
euclidean of dimension n1 + · · ·+ nm.

Example We can now find even more examples of topological manifolds:

(i) S1 × · · · × S1 = T k is a k manifold, the k-torus

(ii) Sn × Sm is an n+m manifold

(iii) Sn × Rm is also an n+m manifold

2.11 The Quotient Topology

Let X be a topological space, let Y be any set, and let π : X → Y be a surjective map.

Definition We endow Y with a topology called the quotient topology by declaring a subset U ⊆ Y
to be open if and only if π−1 (U) is open in X.

Claim This is a topology on Y

Proof. (i) Clearly π−1 (∅) = ∅ and since π is surjective we have that π−1 (Y ) = X

(ii) π−1 (
⋃
α Uα) =

⋃
α π
−1 (Uα) so arbitrary unions are open.
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(iii) π−1
(⋂k

i=1 Ui

)
=
⋂k
i=1 π

−1 (Ui)

Remark The map π is continuous by definition of the topology on Y .

Definition Let X,Y be two topological spaces and let π : X → Y be a continuous surjection. We say
that π is a quotient map if and only if Y has the quotient topology determined by X and π.

In other words, its true that U ⊆ Y open implies that π−1 (U) ⊆ X is open since π is continuous, so
this says that π is a quotient map if and only if π−1 (U) ⊆ X open implies U ⊆ Y open.

Why is this called the quotient topology?
The most common way that a quotient topology arises is as follows. Let X be a topological space

and let ∼ be an equivalence relation on X. Let Y = X/∼ be the set of equivalence classes (ie: a point
in Y is a subset [p] of X where [p] = {q ∈ X : q ∼ p}). Let π : X → Y be given by π (p) = [p], then π is
surjective and we can endow Y with the quotient topology.

Notice that π−1 ([p]) = {q ∈ X : π (q) = [p]} = {q ∈ X : q ∼ p} = [p]. We say that π−1 ([p]) =
π−1 (π (p)) is called the fiber of π over [p] ∈ Y . So X is a disjoint union of fibers.

Let U ⊆ Y be a subset, then

π
(
π−1 (U)

)
=
{
π (p) : p ∈ π−1 (U)

}
= {π (p) : π (p) ∈ U} = U because π is surjective

Now let V ⊆ X and notice that

π−1 (π (V )) = {p ∈ X : π (p) ∈ π (V )} ⊇ V

but we may not have equality.

Definition A subset V ⊆ X is called saturated with respect to π if V = π−1 (U) for some subset
U ⊆ Y .

Suppose that V is saturated and observe that π (V ) = π
(
π−1 (U)

)
= U by surjectivity (so π (V ) =

U). Then π−1 (π (V )) = π−1 (U) = V . Hence we conclude that V ⊆ X is saturated if and only if
π−1 (π (V )) = V .

In other words, a subset V of X is saturated with respect to π if and only if it is a union of fibers of
π.

Lemma A continuous surjection π : X → Y is a quotient map iff it takes saturated open sets to open
sets iff it takes saturated closed sets to closed sets.

Proof. Let V be a saturated open set inX. Then V = π−1 (U) for some U ⊆ Y and π (V ) = π
(
π−1 (U)

)
=

U hence if π−1 (U) is open then π (V ) = U is open as well, but this is what it means for π to be a quotient
map

Conversely, if π is a quotient map then π−1 (U) open in X implies that U is open in Y . But π
(
π−1 (U)

)
is the image of a saturated set.

The statement regarding closed sets is equivalent to the statement about open sets since

X \ π−1 (U) = π−1 (Y \ U)

so complements of saturated sets are saturated. Combining this with the fact that open and closed are
complements, we see these are equivalent.

Definition A map f : X → Y is called open if f (W ) is open in Y whenever W is open in X. It’s called
closed if f (K) is closed in Y whenever K is closed in X.

Corollary Let π be a continuous surjection. If π is an open map or a closed map then π is a quotient
map.

Remark Being open or closed is a stronger property then being a quotient map. In other words, a quotient
map need not be open or closed.

Example
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• Let X = [0, 1) and Y = S1 and f : [0, 1)→ S1 : t 7→ e2πit. Then f is a continuous surjection and
the fibers of f are single points (since f is a bijection). V = [0, 1/2) is saturated and open but f (V )
is not open in S1, hence f is not a quotient map.

• Let X = [0, 1] and Y = S1 and f : X → Y : t 7→ e2πit. This is again a continuous surjection but
this time is not injective. f−1 ((1, 0)) = {0, 1} hence the fiber of f over (1, 0) consists of 2 points
{0, 1} ⊆ X and all other fibers consist of one point.

Claim f is a closed map.

Proof. Any continuous map between compact Hausdorff topological spaces is a closed map (proof
soon).

It follows by the corollary that this map is a quotient map.

Lemma Let π : X → Y and ρ : Y → X be quotient maps. Then ρ ◦ π : X → Z is a quotient map.

Proof. π, ρ are both continuous surjections, hence ρ ◦ π is a continuous surjection. Also, U is open in Z
iff ρ−1 (U) is open in Y iff π−1

(
ρ−1 (U)

)
is open in X (since they are both quotient maps). But this is

just (ρ ◦ π)
−1

(U), hence the composition is a quotient map.
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